Spaces:
Running
Running
import torch.nn as nn | |
import math | |
import torch.nn.functional as F | |
import torch | |
__all__ = ['ResNet', 'resnet18'] | |
def conv3x3(in_planes, out_planes, stride=1): | |
"""3x3 convolution with padding""" | |
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, | |
padding=1, bias=False) | |
class FTB(nn.Module): | |
def __init__(self,in_planes, out_planes=512, stride=1): | |
super(FTB,self).__init__() | |
self.conv0 = nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, padding=1,bias=False) | |
self.conv1 = conv3x3(out_planes, out_planes, stride) | |
self.bn1 = nn.BatchNorm2d(out_planes) | |
self.relu = nn.ReLU(inplace=True) | |
self.conv2 = conv3x3(out_planes, out_planes) | |
self.avgpool1 = nn.AvgPool2d(kernel_size=(2, 2), stride=2) | |
self.avgpool2 = nn.AvgPool2d(kernel_size=(3, 3), stride=1) | |
def forward(self, x, avg=True): | |
x1 = self.conv0(x) | |
residual = x1 | |
out = self.conv1(x1) | |
out = self.bn1(out) | |
out = self.relu(out) | |
out = self.conv2(out) | |
out += residual | |
if avg: | |
out = self.avgpool1(out) | |
else: | |
out = self.avgpool2(out) | |
return out | |
class FRB(nn.Module): | |
def __init__(self,in_planes1,in_planes2): | |
super(FRB,self).__init__() | |
self.fc1 = nn.Linear(in_planes1+in_planes2, in_planes2) | |
self.relu = nn.ReLU(inplace=True) | |
self.fc2 = nn.Linear(in_planes2, in_planes2) | |
def forward(self, xl, xh): | |
xc = torch.cat([xl,xh],dim=1) | |
zc = F.avg_pool2d(xc, kernel_size=xc.size()[2:]) # C x 1 x 1 | |
zc = torch.flatten(zc, 1) | |
out = self.fc1(zc) | |
out = self.relu(out) | |
out = self.fc2(out) | |
zc_ = F.sigmoid(out) | |
zc_ = torch.unsqueeze(zc_,dim=2) | |
zc_ = zc_.repeat(1, 1, xl.shape[2] * xl.shape[3]).view(-1,xl.shape[1],xl.shape[2],xl.shape[3]) | |
xl_ = zc_ * xl #n,c,h,w | |
return xl_ | |
class BasicBlock(nn.Module): | |
expansion = 1 | |
def __init__(self, inplanes, planes, stride=1, downsample=None): | |
super(BasicBlock, self).__init__() | |
self.conv1 = conv3x3(inplanes, planes, stride) | |
self.bn1 = nn.BatchNorm2d(planes) | |
self.relu = nn.ReLU(inplace=True) | |
self.conv2 = conv3x3(planes, planes) | |
self.bn2 = nn.BatchNorm2d(planes) | |
self.downsample = downsample | |
self.stride = stride | |
def forward(self, x): | |
residual = x | |
out = self.conv1(x) | |
out = self.bn1(out) | |
out = self.relu(out) | |
out = self.conv2(out) | |
out = self.bn2(out) | |
if self.downsample is not None: | |
residual = self.downsample(x) | |
out += residual | |
out = self.relu(out) | |
return out | |
class Bottleneck(nn.Module): | |
expansion = 4 | |
def __init__(self, inplanes, planes, stride=1, downsample=None): | |
super(Bottleneck, self).__init__() | |
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) | |
self.bn1 = nn.BatchNorm2d(planes) | |
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,padding=1, bias=False) | |
self.bn2 = nn.BatchNorm2d(planes) | |
self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) | |
self.bn3 = nn.BatchNorm2d(planes * 4) | |
self.relu = nn.ReLU(inplace=True) | |
self.downsample = downsample | |
self.stride = stride | |
def forward(self, x): | |
residual = x | |
out = self.conv1(x) | |
out = self.bn1(out) | |
out = self.relu(out) | |
out = self.conv2(out) | |
out = self.bn2(out) | |
out = self.relu(out) | |
out = self.conv3(out) | |
out = self.bn3(out) | |
if self.downsample is not None: | |
residual = self.downsample(x) | |
out += residual | |
out = self.relu(out) | |
return out | |
class ResNet(nn.Module): | |
def __init__(self, block, layers, top_channel_nums=2048, reduced_channel_nums=256, num_classes=51, scale=1): | |
self.inplanes = 64 | |
super(ResNet, self).__init__() | |
self.conv1 = nn.Conv2d(5, 64, kernel_size=(11, 11), stride=(2, 2), padding=(4, 4),bias=False) | |
self.bn1 = nn.BatchNorm2d(64) | |
self.relu1 = nn.ReLU(inplace=True) | |
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) | |
self.layer1 = self._make_layer(block, 64, layers[0]) | |
self.layer2 = self._make_layer(block, 128, layers[1], stride=2) | |
self.FTB2_1 = FTB(128, 128) | |
self.FTB2_2 = FTB(128, 128) | |
self.FRB2 = FRB(128, 128) | |
self.layer3 = self._make_layer(block, 256, layers[2], stride=2) | |
self.FTB3 = FTB(256, 128) | |
self.FRB3 = FRB(128, 128) | |
self.layer4 = self._make_layer(block, 512, layers[3], stride=2) | |
self.FTB4 = FTB(512, 128) | |
self.FRB4 = FRB(64, 128) | |
#FPN PARTS | |
# Top layer | |
self.toplayer = nn.Conv2d(top_channel_nums, reduced_channel_nums, kernel_size=1, stride=1, padding=0) # Reduce channels, | |
self.toplayer_bn = nn.BatchNorm2d(reduced_channel_nums) | |
self.toplayer_relu = nn.ReLU(inplace=True) | |
self.conv2 = nn.Conv2d(128, 128, kernel_size=1) | |
self.fc = nn.Linear(128, num_classes) | |
for m in self.modules(): | |
if isinstance(m, nn.Conv2d): | |
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels | |
m.weight.data.normal_(0, math.sqrt(2. / n)) | |
elif isinstance(m, nn.BatchNorm2d): | |
m.weight.data.fill_(1) | |
m.bias.data.zero_() | |
def _make_layer(self, block, planes, blocks, stride=1): | |
downsample = None | |
if stride != 1 or self.inplanes != planes * block.expansion: | |
downsample = nn.Sequential( | |
nn.Conv2d(self.inplanes, planes * block.expansion, | |
kernel_size=1, stride=stride, bias=False), | |
nn.BatchNorm2d(planes * block.expansion), | |
) | |
layers = [] | |
layers.append(block(self.inplanes, planes, stride, downsample)) | |
self.inplanes = planes * block.expansion | |
for i in range(1, blocks): | |
layers.append(block(self.inplanes, planes)) | |
return nn.Sequential(*layers) | |
def _upsample(self, x, y, scale=1): | |
_, _, H, W = y.size() | |
return F.upsample(x, size=(H // scale, W // scale), mode='bilinear') | |
def _upsample_add(self, x, y): | |
_, _, H, W = y.size() | |
return F.upsample(x, size=(H, W), mode='bilinear') + y | |
def forward(self, x): | |
h = x | |
h = self.conv1(h) | |
h = self.bn1(h) | |
h = self.relu1(h) | |
h = self.maxpool(h) | |
h = self.layer1(h) | |
x1 = h | |
h = self.layer2(h) | |
x2 = h | |
h = self.layer3(h) | |
x3 = h | |
h = self.layer4(h) | |
x4 = h | |
# Top-down | |
x5 = self.toplayer(x4) | |
x5 = self.toplayer_relu(self.toplayer_bn(x5)) | |
x2_ = self.FTB2_1(x2) | |
x2_ = self.FTB2_2(x2_) | |
x3_ = self.FTB3(x3) | |
x4_ = self.FTB4(x4, avg=False) | |
p4 = self.FRB4(x4_, x5) | |
p3 = self.FRB3(x3_, p4) | |
p2 = self.FRB2(x2_, p3) | |
out1 = p2*p3 | |
out1_ = F.softmax(out1.view(*out1.size()[:2], -1),dim=2).view_as(out1) | |
out2 = out1_*p4 | |
out2 = self.conv2(out2) | |
out = out2 + p4 | |
out = F.avg_pool2d(out, kernel_size=out.size()[2:]) | |
out = torch.flatten(out, 1) | |
out = self.fc(out) | |
return out | |
def resnet18(**kwargs): | |
"""Constructs a ResNet-18 model. | |
""" | |
model = ResNet(BasicBlock, layers=[2, 2, 2, 2], top_channel_nums=512, reduced_channel_nums=64, **kwargs) | |
return model | |
if __name__ == "__main__": | |
net = resnet18() | |
print(net) | |
imgs = torch.rand((2, 5, 100,900)) | |
logits = net(imgs) | |
print(logits.shape) |