lshzhm's picture
Upload 141 files
1991049 verified
raw
history blame
8.12 kB
import torch.nn as nn
import math
import torch.nn.functional as F
import torch
__all__ = ['ResNet', 'resnet18']
def conv3x3(in_planes, out_planes, stride=1):
"""3x3 convolution with padding"""
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, bias=False)
class FTB(nn.Module):
def __init__(self,in_planes, out_planes=512, stride=1):
super(FTB,self).__init__()
self.conv0 = nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, padding=1,bias=False)
self.conv1 = conv3x3(out_planes, out_planes, stride)
self.bn1 = nn.BatchNorm2d(out_planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(out_planes, out_planes)
self.avgpool1 = nn.AvgPool2d(kernel_size=(2, 2), stride=2)
self.avgpool2 = nn.AvgPool2d(kernel_size=(3, 3), stride=1)
def forward(self, x, avg=True):
x1 = self.conv0(x)
residual = x1
out = self.conv1(x1)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out += residual
if avg:
out = self.avgpool1(out)
else:
out = self.avgpool2(out)
return out
class FRB(nn.Module):
def __init__(self,in_planes1,in_planes2):
super(FRB,self).__init__()
self.fc1 = nn.Linear(in_planes1+in_planes2, in_planes2)
self.relu = nn.ReLU(inplace=True)
self.fc2 = nn.Linear(in_planes2, in_planes2)
def forward(self, xl, xh):
xc = torch.cat([xl,xh],dim=1)
zc = F.avg_pool2d(xc, kernel_size=xc.size()[2:]) # C x 1 x 1
zc = torch.flatten(zc, 1)
out = self.fc1(zc)
out = self.relu(out)
out = self.fc2(out)
zc_ = F.sigmoid(out)
zc_ = torch.unsqueeze(zc_,dim=2)
zc_ = zc_.repeat(1, 1, xl.shape[2] * xl.shape[3]).view(-1,xl.shape[1],xl.shape[2],xl.shape[3])
xl_ = zc_ * xl #n,c,h,w
return xl_
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(BasicBlock, self).__init__()
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1 = nn.BatchNorm2d(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.bn2 = nn.BatchNorm2d(planes)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(planes * 4)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class ResNet(nn.Module):
def __init__(self, block, layers, top_channel_nums=2048, reduced_channel_nums=256, num_classes=51, scale=1):
self.inplanes = 64
super(ResNet, self).__init__()
self.conv1 = nn.Conv2d(5, 64, kernel_size=(11, 11), stride=(2, 2), padding=(4, 4),bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu1 = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.FTB2_1 = FTB(128, 128)
self.FTB2_2 = FTB(128, 128)
self.FRB2 = FRB(128, 128)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
self.FTB3 = FTB(256, 128)
self.FRB3 = FRB(128, 128)
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
self.FTB4 = FTB(512, 128)
self.FRB4 = FRB(64, 128)
#FPN PARTS
# Top layer
self.toplayer = nn.Conv2d(top_channel_nums, reduced_channel_nums, kernel_size=1, stride=1, padding=0) # Reduce channels,
self.toplayer_bn = nn.BatchNorm2d(reduced_channel_nums)
self.toplayer_relu = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(128, 128, kernel_size=1)
self.fc = nn.Linear(128, num_classes)
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
def _make_layer(self, block, planes, blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes))
return nn.Sequential(*layers)
def _upsample(self, x, y, scale=1):
_, _, H, W = y.size()
return F.upsample(x, size=(H // scale, W // scale), mode='bilinear')
def _upsample_add(self, x, y):
_, _, H, W = y.size()
return F.upsample(x, size=(H, W), mode='bilinear') + y
def forward(self, x):
h = x
h = self.conv1(h)
h = self.bn1(h)
h = self.relu1(h)
h = self.maxpool(h)
h = self.layer1(h)
x1 = h
h = self.layer2(h)
x2 = h
h = self.layer3(h)
x3 = h
h = self.layer4(h)
x4 = h
# Top-down
x5 = self.toplayer(x4)
x5 = self.toplayer_relu(self.toplayer_bn(x5))
x2_ = self.FTB2_1(x2)
x2_ = self.FTB2_2(x2_)
x3_ = self.FTB3(x3)
x4_ = self.FTB4(x4, avg=False)
p4 = self.FRB4(x4_, x5)
p3 = self.FRB3(x3_, p4)
p2 = self.FRB2(x2_, p3)
out1 = p2*p3
out1_ = F.softmax(out1.view(*out1.size()[:2], -1),dim=2).view_as(out1)
out2 = out1_*p4
out2 = self.conv2(out2)
out = out2 + p4
out = F.avg_pool2d(out, kernel_size=out.size()[2:])
out = torch.flatten(out, 1)
out = self.fc(out)
return out
def resnet18(**kwargs):
"""Constructs a ResNet-18 model.
"""
model = ResNet(BasicBlock, layers=[2, 2, 2, 2], top_channel_nums=512, reduced_channel_nums=64, **kwargs)
return model
if __name__ == "__main__":
net = resnet18()
print(net)
imgs = torch.rand((2, 5, 100,900))
logits = net(imgs)
print(logits.shape)