lshzhm's picture
init commit
99bbd30 verified
raw
history blame contribute delete
6.72 kB
import json
import logging
import os
from pathlib import Path
from typing import Union
import pandas as pd
import torch
from torch.utils.data.dataset import Dataset
from torchvision.transforms import v2
from torio.io import StreamingMediaDecoder
from mmaudio.utils.dist_utils import local_rank
log = logging.getLogger()
_CLIP_SIZE = 384
_CLIP_FPS = 8.0
_SYNC_SIZE = 224
_SYNC_FPS = 25.0
class VideoDataset(Dataset):
def __init__(
self,
video_root: Union[str, Path],
*,
duration_sec: float = 8.0,
):
self.video_root = Path(video_root)
self.duration_sec = duration_sec
self.clip_expected_length = int(_CLIP_FPS * self.duration_sec)
self.sync_expected_length = int(_SYNC_FPS * self.duration_sec)
self.clip_transform = v2.Compose([
v2.Resize((_CLIP_SIZE, _CLIP_SIZE), interpolation=v2.InterpolationMode.BICUBIC),
v2.ToImage(),
v2.ToDtype(torch.float32, scale=True),
])
self.sync_transform = v2.Compose([
v2.Resize(_SYNC_SIZE, interpolation=v2.InterpolationMode.BICUBIC),
v2.CenterCrop(_SYNC_SIZE),
v2.ToImage(),
v2.ToDtype(torch.float32, scale=True),
v2.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
])
# to be implemented by subclasses
self.captions = {}
self.videos = sorted(list(self.captions.keys()))
def sample(self, idx: int) -> dict[str, torch.Tensor]:
video_id = self.videos[idx]
caption = self.captions[video_id]
reader = StreamingMediaDecoder(self.video_root / (video_id + '.mp4'))
reader.add_basic_video_stream(
frames_per_chunk=int(_CLIP_FPS * self.duration_sec),
frame_rate=_CLIP_FPS,
format='rgb24',
)
reader.add_basic_video_stream(
frames_per_chunk=int(_SYNC_FPS * self.duration_sec),
frame_rate=_SYNC_FPS,
format='rgb24',
)
reader.fill_buffer()
data_chunk = reader.pop_chunks()
clip_chunk = data_chunk[0]
sync_chunk = data_chunk[1]
if clip_chunk is None:
raise RuntimeError(f'CLIP video returned None {video_id}')
if clip_chunk.shape[0] < self.clip_expected_length:
raise RuntimeError(
f'CLIP video too short {video_id}, expected {self.clip_expected_length}, got {clip_chunk.shape[0]}'
)
if sync_chunk is None:
raise RuntimeError(f'Sync video returned None {video_id}')
if sync_chunk.shape[0] < self.sync_expected_length:
raise RuntimeError(
f'Sync video too short {video_id}, expected {self.sync_expected_length}, got {sync_chunk.shape[0]}'
)
# truncate the video
clip_chunk = clip_chunk[:self.clip_expected_length]
if clip_chunk.shape[0] != self.clip_expected_length:
raise RuntimeError(f'CLIP video wrong length {video_id}, '
f'expected {self.clip_expected_length}, '
f'got {clip_chunk.shape[0]}')
clip_chunk = self.clip_transform(clip_chunk)
sync_chunk = sync_chunk[:self.sync_expected_length]
if sync_chunk.shape[0] != self.sync_expected_length:
raise RuntimeError(f'Sync video wrong length {video_id}, '
f'expected {self.sync_expected_length}, '
f'got {sync_chunk.shape[0]}')
sync_chunk = self.sync_transform(sync_chunk)
data = {
'name': video_id,
'caption': caption,
'clip_video': clip_chunk,
'sync_video': sync_chunk,
}
return data
def __getitem__(self, idx: int) -> dict[str, torch.Tensor]:
try:
return self.sample(idx)
except Exception as e:
log.error(f'Error loading video {self.videos[idx]}: {e}')
return None
def __len__(self):
return len(self.captions)
class VGGSound(VideoDataset):
def __init__(
self,
video_root: Union[str, Path],
csv_path: Union[str, Path],
*,
duration_sec: float = 8.0,
):
super().__init__(video_root, duration_sec=duration_sec)
self.video_root = Path(video_root)
self.csv_path = Path(csv_path)
videos = sorted(os.listdir(self.video_root))
if local_rank == 0:
log.info(f'{len(videos)} videos found in {video_root}')
self.captions = {}
df = pd.read_csv(csv_path, header=None, names=['id', 'sec', 'caption',
'split']).to_dict(orient='records')
videos_no_found = []
for row in df:
if row['split'] == 'test':
start_sec = int(row['sec'])
video_id = str(row['id'])
# this is how our videos are named
video_name = f'{video_id}_{start_sec:06d}'
if video_name + '.mp4' not in videos:
videos_no_found.append(video_name)
continue
self.captions[video_name] = row['caption']
if local_rank == 0:
log.info(f'{len(videos)} videos found in {video_root}')
log.info(f'{len(self.captions)} useable videos found')
if videos_no_found:
log.info(f'{len(videos_no_found)} found in {csv_path} but not in {video_root}')
log.info(
'A small amount is expected, as not all videos are still available on YouTube')
self.videos = sorted(list(self.captions.keys()))
class MovieGen(VideoDataset):
def __init__(
self,
video_root: Union[str, Path],
jsonl_root: Union[str, Path],
*,
duration_sec: float = 10.0,
):
super().__init__(video_root, duration_sec=duration_sec)
self.video_root = Path(video_root)
self.jsonl_root = Path(jsonl_root)
videos = sorted(os.listdir(self.video_root))
videos = [v[:-4] for v in videos] # remove extensions
self.captions = {}
for v in videos:
with open(self.jsonl_root / (v + '.jsonl')) as f:
data = json.load(f)
self.captions[v] = data['audio_prompt']
if local_rank == 0:
log.info(f'{len(videos)} videos found in {video_root}')
self.videos = videos