512
Browse files
app.py
CHANGED
@@ -34,7 +34,8 @@ inpainting_pipeline = StableDiffusionInpaintPipeline.from_pretrained(
|
|
34 |
#inpainting_pipeline.load_lora_weights("latent-consistency/lcm-lora-sdv1-5")
|
35 |
#inpainting_pipeline.fuse_lora()
|
36 |
|
37 |
-
|
|
|
38 |
|
39 |
default_inpainting_prompt = "award-winning photo of a leafy pedestrian mall full of people, with multiracial genderqueer joggers and bicyclists and wheelchair users talking and laughing"
|
40 |
|
@@ -60,15 +61,15 @@ def get_seg_mask(img):
|
|
60 |
def app(img, prompt):
|
61 |
start_time = datetime.now().timestamp()
|
62 |
old_size = Image.fromarray(img).size
|
63 |
-
img = np.array(Image.fromarray(img).resize(
|
64 |
mask = get_seg_mask(img)
|
65 |
-
mask.save("mask.jpg")
|
66 |
mask_time = datetime.now().timestamp()
|
67 |
#print(prompt.__class__, img.__class__, mask.__class__, img.shape, mask.shape, mask.dtype, img.dtype)
|
68 |
overlay_img = inpainting_pipeline(
|
69 |
prompt=prompt,
|
70 |
-
image=Image.fromarray(img),
|
71 |
-
mask_image=(mask),
|
72 |
strength=0.95,
|
73 |
num_inference_steps=12,
|
74 |
).images[0]
|
|
|
34 |
#inpainting_pipeline.load_lora_weights("latent-consistency/lcm-lora-sdv1-5")
|
35 |
#inpainting_pipeline.fuse_lora()
|
36 |
|
37 |
+
seg_working_size = (seg_model_img_size, seg_model_img_size)
|
38 |
+
repaint_working_size = (512, 512)
|
39 |
|
40 |
default_inpainting_prompt = "award-winning photo of a leafy pedestrian mall full of people, with multiracial genderqueer joggers and bicyclists and wheelchair users talking and laughing"
|
41 |
|
|
|
61 |
def app(img, prompt):
|
62 |
start_time = datetime.now().timestamp()
|
63 |
old_size = Image.fromarray(img).size
|
64 |
+
img = np.array(Image.fromarray(img).resize(seg_working_size))
|
65 |
mask = get_seg_mask(img)
|
66 |
+
# mask.save("mask.jpg")
|
67 |
mask_time = datetime.now().timestamp()
|
68 |
#print(prompt.__class__, img.__class__, mask.__class__, img.shape, mask.shape, mask.dtype, img.dtype)
|
69 |
overlay_img = inpainting_pipeline(
|
70 |
prompt=prompt,
|
71 |
+
image=Image.fromarray(img).resize(repaint_working_size),
|
72 |
+
mask_image=(mask).resize(repaint_working_size),
|
73 |
strength=0.95,
|
74 |
num_inference_steps=12,
|
75 |
).images[0]
|