Spaces:
Sleeping
Sleeping
import gradio as gr | |
import pandas as pd | |
from transformers import pipeline | |
# Initialize the zero-shot classifier | |
classifier = pipeline('zero-shot-classification', model='distilbert-base-uncased') | |
# Define the possible categories (more granular categories) | |
candidate_labels = ["ACL Tear", "Meniscus Tear", "Achilles Tear", "Fracture", "Hamstring", "Foot", "Shoulder", "Hip", "Calf", "Hand", "Wrist"] | |
def classify_injuries(file): | |
# Load the uploaded CSV file | |
df = pd.read_csv(file.name) | |
# Limit to a sample (e.g., first 100 rows) if necessary for performance | |
new_df = df.head(100).copy() | |
# Apply zero-shot classification to each note in the 'Notes' column | |
classifications = classifier(new_df['Notes'].tolist(), candidate_labels) | |
# Add the classification results to the DataFrame | |
new_df['Classifications'] = classifications | |
new_df['Top Classification'] = new_df['Classifications'].apply(lambda x: x['labels'][0] if isinstance(x, dict) else None) | |
new_df['Top Score'] = new_df['Classifications'].apply(lambda x: x['scores'][0] if isinstance(x, dict) else None) | |
# Initialize the 'Specific Injury' column with default value | |
new_df['Specific Injury'] = None | |
# Define a function to determine the specific injury based on keywords | |
def extract_specific_injury(note, injury): | |
note = note.lower() | |
if "left" in note: | |
return f"left {injury.lower()} injury" | |
elif "right" in note: | |
return f"right {injury.lower()} injury" | |
else: | |
return f"{injury.lower()} injury" | |
# Apply specific injury classification based on keywords | |
for injury in candidate_labels: | |
new_df.loc[new_df['Top Classification'].str.contains(injury, case=False, na=False), 'Specific Injury'] = \ | |
new_df['Notes'].apply(lambda x: extract_specific_injury(x, injury) if injury.lower() in x.lower() else None) | |
# Sort by 'Top Score' in descending order | |
new_df_sorted = new_df.sort_values(by='Top Score', ascending=False) | |
# Return a subset of columns for clarity | |
return new_df_sorted[['Notes', 'Top Classification', 'Top Score', 'Specific Injury']] | |
# Set up the Gradio interface | |
iface = gr.Interface( | |
fn=classify_injuries, | |
inputs=gr.File(label="Upload CSV File (must have a 'Notes' column)"), | |
outputs="dataframe", | |
title="Injury Classification App", | |
description="Upload a CSV file with injury notes. The app classifies each note based on specified injury types and provides specific classifications where possible." | |
) | |
# Launch the Gradio app | |
iface.launch() | |