Add codebase
Browse files- nlp4web-codebase/README.md +2 -0
- nlp4web-codebase/nlp4web_codebase/__init__.py +0 -0
- nlp4web-codebase/nlp4web_codebase/ir/__init__.py +0 -0
- nlp4web-codebase/nlp4web_codebase/ir/analysis.py +160 -0
- nlp4web-codebase/nlp4web_codebase/ir/data_loaders/__init__.py +35 -0
- nlp4web-codebase/nlp4web_codebase/ir/data_loaders/dm.py +22 -0
- nlp4web-codebase/nlp4web_codebase/ir/data_loaders/sciq.py +88 -0
- nlp4web-codebase/nlp4web_codebase/ir/models/__init__.py +21 -0
- nlp4web-codebase/requirements.txt +1 -0
- nlp4web-codebase/setup.py +37 -0
nlp4web-codebase/README.md
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
# nlp4web
|
2 |
+
Codebase of teaching materials for NLP4Web.
|
nlp4web-codebase/nlp4web_codebase/__init__.py
ADDED
File without changes
|
nlp4web-codebase/nlp4web_codebase/ir/__init__.py
ADDED
File without changes
|
nlp4web-codebase/nlp4web_codebase/ir/analysis.py
ADDED
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from typing import Dict, List, Optional, Protocol
|
3 |
+
import pandas as pd
|
4 |
+
import tqdm
|
5 |
+
import ujson
|
6 |
+
from nlp4web_codebase.ir.data_loaders import IRDataset
|
7 |
+
|
8 |
+
|
9 |
+
def round_dict(obj: Dict[str, float], ndigits: int = 4) -> Dict[str, float]:
|
10 |
+
return {k: round(v, ndigits=ndigits) for k, v in obj.items()}
|
11 |
+
|
12 |
+
|
13 |
+
def sort_dict(obj: Dict[str, float], reverse: bool = True) -> Dict[str, float]:
|
14 |
+
return dict(sorted(obj.items(), key=lambda pair: pair[1], reverse=reverse))
|
15 |
+
|
16 |
+
|
17 |
+
def save_ranking_results(
|
18 |
+
output_dir: str,
|
19 |
+
query_ids: List[str],
|
20 |
+
rankings: List[Dict[str, float]],
|
21 |
+
query_performances_lists: List[Dict[str, float]],
|
22 |
+
cid2tweights_lists: Optional[List[Dict[str, Dict[str, float]]]] = None,
|
23 |
+
):
|
24 |
+
os.makedirs(output_dir, exist_ok=True)
|
25 |
+
output_path = os.path.join(output_dir, "ranking_results.jsonl")
|
26 |
+
rows = []
|
27 |
+
for i, (query_id, ranking, query_performances) in enumerate(
|
28 |
+
zip(query_ids, rankings, query_performances_lists)
|
29 |
+
):
|
30 |
+
row = {
|
31 |
+
"query_id": query_id,
|
32 |
+
"ranking": round_dict(ranking),
|
33 |
+
"query_performances": round_dict(query_performances),
|
34 |
+
"cid2tweights": {},
|
35 |
+
}
|
36 |
+
if cid2tweights_lists is not None:
|
37 |
+
row["cid2tweights"] = {
|
38 |
+
cid: round_dict(tws) for cid, tws in cid2tweights_lists[i].items()
|
39 |
+
}
|
40 |
+
rows.append(row)
|
41 |
+
pd.DataFrame(rows).to_json(
|
42 |
+
output_path,
|
43 |
+
orient="records",
|
44 |
+
lines=True,
|
45 |
+
)
|
46 |
+
|
47 |
+
|
48 |
+
class TermWeightingFunction(Protocol):
|
49 |
+
def __call__(self, query: str, cid: str) -> Dict[str, float]: ...
|
50 |
+
|
51 |
+
|
52 |
+
def compare(
|
53 |
+
dataset: IRDataset,
|
54 |
+
results_path1: str,
|
55 |
+
results_path2: str,
|
56 |
+
output_dir: str,
|
57 |
+
main_metric: str = "recip_rank",
|
58 |
+
system1: Optional[str] = None,
|
59 |
+
system2: Optional[str] = None,
|
60 |
+
term_weighting_fn1: Optional[TermWeightingFunction] = None,
|
61 |
+
term_weighting_fn2: Optional[TermWeightingFunction] = None,
|
62 |
+
) -> None:
|
63 |
+
os.makedirs(output_dir, exist_ok=True)
|
64 |
+
df1 = pd.read_json(results_path1, orient="records", lines=True)
|
65 |
+
df2 = pd.read_json(results_path2, orient="records", lines=True)
|
66 |
+
assert len(df1) == len(df2)
|
67 |
+
all_qrels = {}
|
68 |
+
for split in dataset.split2qrels:
|
69 |
+
all_qrels.update(dataset.get_qrels_dict(split))
|
70 |
+
qid2query = {query.query_id: query for query in dataset.queries}
|
71 |
+
cid2doc = {doc.collection_id: doc for doc in dataset.corpus}
|
72 |
+
diff_col = f"{main_metric}:qp1-qp2"
|
73 |
+
merged = pd.merge(df1, df2, on="query_id", how="outer")
|
74 |
+
rows = []
|
75 |
+
for _, example in tqdm.tqdm(merged.iterrows(), desc="Comparing", total=len(merged)):
|
76 |
+
docs = {cid: cid2doc[cid].text for cid in dict(example["ranking_x"])}
|
77 |
+
docs.update({cid: cid2doc[cid].text for cid in dict(example["ranking_y"])})
|
78 |
+
query_id = example["query_id"]
|
79 |
+
row = {
|
80 |
+
"query_id": query_id,
|
81 |
+
"query": qid2query[query_id].text,
|
82 |
+
diff_col: example["query_performances_x"][main_metric]
|
83 |
+
- example["query_performances_y"][main_metric],
|
84 |
+
"ranking1": ujson.dumps(example["ranking_x"], indent=4),
|
85 |
+
"ranking2": ujson.dumps(example["ranking_y"], indent=4),
|
86 |
+
"docs": ujson.dumps(docs, indent=4),
|
87 |
+
"query_performances1": ujson.dumps(
|
88 |
+
example["query_performances_x"], indent=4
|
89 |
+
),
|
90 |
+
"query_performances2": ujson.dumps(
|
91 |
+
example["query_performances_y"], indent=4
|
92 |
+
),
|
93 |
+
"qrels": ujson.dumps(all_qrels[query_id], indent=4),
|
94 |
+
}
|
95 |
+
if term_weighting_fn1 is not None and term_weighting_fn2 is not None:
|
96 |
+
all_cids = set(example["ranking_x"]) | set(example["ranking_y"])
|
97 |
+
cid2tweights1 = {}
|
98 |
+
cid2tweights2 = {}
|
99 |
+
ranking1 = {}
|
100 |
+
ranking2 = {}
|
101 |
+
for cid in all_cids:
|
102 |
+
tweights1 = term_weighting_fn1(query=qid2query[query_id].text, cid=cid)
|
103 |
+
tweights2 = term_weighting_fn2(query=qid2query[query_id].text, cid=cid)
|
104 |
+
ranking1[cid] = sum(tweights1.values())
|
105 |
+
ranking2[cid] = sum(tweights2.values())
|
106 |
+
cid2tweights1[cid] = tweights1
|
107 |
+
cid2tweights2[cid] = tweights2
|
108 |
+
ranking1 = sort_dict(ranking1)
|
109 |
+
ranking2 = sort_dict(ranking2)
|
110 |
+
row["ranking1"] = ujson.dumps(ranking1, indent=4)
|
111 |
+
row["ranking2"] = ujson.dumps(ranking2, indent=4)
|
112 |
+
cid2tweights1 = {cid: cid2tweights1[cid] for cid in ranking1}
|
113 |
+
cid2tweights2 = {cid: cid2tweights2[cid] for cid in ranking2}
|
114 |
+
row["cid2tweights1"] = ujson.dumps(cid2tweights1, indent=4)
|
115 |
+
row["cid2tweights2"] = ujson.dumps(cid2tweights2, indent=4)
|
116 |
+
rows.append(row)
|
117 |
+
table = pd.DataFrame(rows).sort_values(by=diff_col, ascending=False)
|
118 |
+
output_path = os.path.join(output_dir, f"compare-{system1}_vs_{system2}.tsv")
|
119 |
+
table.to_csv(output_path, sep="\t", index=False)
|
120 |
+
|
121 |
+
|
122 |
+
# if __name__ == "__main__":
|
123 |
+
# # python -m lecture2.bm25.analysis
|
124 |
+
# from nlp4web_codebase.ir.data_loaders.sciq import load_sciq
|
125 |
+
# from lecture2.bm25.bm25_retriever import BM25Retriever
|
126 |
+
# from lecture2.bm25.tfidf_retriever import TFIDFRetriever
|
127 |
+
# import numpy as np
|
128 |
+
|
129 |
+
# sciq = load_sciq()
|
130 |
+
# system1 = "bm25"
|
131 |
+
# system2 = "tfidf"
|
132 |
+
# results_path1 = f"output/sciq-{system1}/results/ranking_results.jsonl"
|
133 |
+
# results_path2 = f"output/sciq-{system2}/results/ranking_results.jsonl"
|
134 |
+
# index_dir1 = f"output/sciq-{system1}"
|
135 |
+
# index_dir2 = f"output/sciq-{system2}"
|
136 |
+
# compare(
|
137 |
+
# dataset=sciq,
|
138 |
+
# results_path1=results_path1,
|
139 |
+
# results_path2=results_path2,
|
140 |
+
# output_dir=f"output/sciq-{system1}_vs_{system2}",
|
141 |
+
# system1=system1,
|
142 |
+
# system2=system2,
|
143 |
+
# term_weighting_fn1=BM25Retriever(index_dir1).get_term_weights,
|
144 |
+
# term_weighting_fn2=TFIDFRetriever(index_dir2).get_term_weights,
|
145 |
+
# )
|
146 |
+
|
147 |
+
# # bias on #shared_terms of TFIDF:
|
148 |
+
# df1 = pd.read_json(results_path1, orient="records", lines=True)
|
149 |
+
# df2 = pd.read_json(results_path2, orient="records", lines=True)
|
150 |
+
# merged = pd.merge(df1, df2, on="query_id", how="outer")
|
151 |
+
# nterms1 = []
|
152 |
+
# nterms2 = []
|
153 |
+
# for _, row in merged.iterrows():
|
154 |
+
# nterms1.append(len(list(dict(row["cid2tweights_x"]).values())[0]))
|
155 |
+
# nterms2.append(len(list(dict(row["cid2tweights_y"]).values())[0]))
|
156 |
+
# percentiles = (5, 25, 50, 75, 95)
|
157 |
+
# print(system1, np.percentile(nterms1, percentiles), np.mean(nterms1).round(2))
|
158 |
+
# print(system2, np.percentile(nterms2, percentiles), np.mean(nterms2).round(2))
|
159 |
+
# # bm25 [ 3. 4. 5. 7. 11.] 5.64
|
160 |
+
# # tfidf [1. 2. 3. 5. 9.] 3.58
|
nlp4web-codebase/nlp4web_codebase/ir/data_loaders/__init__.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
from enum import Enum
|
3 |
+
from typing import Dict, List
|
4 |
+
from nlp4web_codebase.ir.data_loaders.dm import Document, Query, QRel
|
5 |
+
|
6 |
+
|
7 |
+
class Split(str, Enum):
|
8 |
+
train = "train"
|
9 |
+
dev = "dev"
|
10 |
+
test = "test"
|
11 |
+
|
12 |
+
|
13 |
+
@dataclass
|
14 |
+
class IRDataset:
|
15 |
+
corpus: List[Document]
|
16 |
+
queries: List[Query]
|
17 |
+
split2qrels: Dict[Split, List[QRel]]
|
18 |
+
|
19 |
+
def get_stats(self) -> Dict[str, int]:
|
20 |
+
stats = {"|corpus|": len(self.corpus), "|queries|": len(self.queries)}
|
21 |
+
for split, qrels in self.split2qrels.items():
|
22 |
+
stats[f"|qrels-{split}|"] = len(qrels)
|
23 |
+
return stats
|
24 |
+
|
25 |
+
def get_qrels_dict(self, split: Split) -> Dict[str, Dict[str, int]]:
|
26 |
+
qrels_dict = {}
|
27 |
+
for qrel in self.split2qrels[split]:
|
28 |
+
qrels_dict.setdefault(qrel.query_id, {})
|
29 |
+
qrels_dict[qrel.query_id][qrel.collection_id] = qrel.relevance
|
30 |
+
return qrels_dict
|
31 |
+
|
32 |
+
def get_split_queries(self, split: Split) -> List[Query]:
|
33 |
+
qrels = self.split2qrels[split]
|
34 |
+
qids = {qrel.query_id for qrel in qrels}
|
35 |
+
return list(filter(lambda query: query.query_id in qids, self.queries))
|
nlp4web-codebase/nlp4web_codebase/ir/data_loaders/dm.py
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
from typing import Optional
|
3 |
+
|
4 |
+
|
5 |
+
@dataclass
|
6 |
+
class Document:
|
7 |
+
collection_id: str
|
8 |
+
text: str
|
9 |
+
|
10 |
+
|
11 |
+
@dataclass
|
12 |
+
class Query:
|
13 |
+
query_id: str
|
14 |
+
text: str
|
15 |
+
|
16 |
+
|
17 |
+
@dataclass
|
18 |
+
class QRel:
|
19 |
+
query_id: str
|
20 |
+
collection_id: str
|
21 |
+
relevance: int
|
22 |
+
answer: Optional[str] = None
|
nlp4web-codebase/nlp4web_codebase/ir/data_loaders/sciq.py
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, List
|
2 |
+
|
3 |
+
import joblib
|
4 |
+
from datasets import load_dataset
|
5 |
+
from nlp4web_codebase.ir.data_loaders import IRDataset, Split
|
6 |
+
from nlp4web_codebase.ir.data_loaders.dm import Document, QRel, Query
|
7 |
+
|
8 |
+
|
9 |
+
@(joblib.Memory(".cache").cache)
|
10 |
+
def load_sciq(verbose: bool = False) -> IRDataset:
|
11 |
+
train = load_dataset("allenai/sciq", split="train")
|
12 |
+
validation = load_dataset("allenai/sciq", split="validation")
|
13 |
+
test = load_dataset("allenai/sciq", split="test")
|
14 |
+
data = {Split.train: train, Split.dev: validation, Split.test: test}
|
15 |
+
|
16 |
+
# Each duplicated record is the same to each other:
|
17 |
+
df = train.to_pandas() + validation.to_pandas() + test.to_pandas()
|
18 |
+
for question, group in df.groupby("question"):
|
19 |
+
assert len(set(group["support"].tolist())) == len(group)
|
20 |
+
assert len(set(group["correct_answer"].tolist())) == len(group)
|
21 |
+
|
22 |
+
# Build:
|
23 |
+
corpus = []
|
24 |
+
queries = []
|
25 |
+
split2qrels: Dict[str, List[dict]] = {}
|
26 |
+
question2id = {}
|
27 |
+
support2id = {}
|
28 |
+
for split, rows in data.items():
|
29 |
+
if verbose:
|
30 |
+
print(f"|raw_{split}|", len(rows))
|
31 |
+
split2qrels[split] = []
|
32 |
+
for i, row in enumerate(rows):
|
33 |
+
example_id = f"{split}-{i}"
|
34 |
+
support: str = row["support"]
|
35 |
+
if len(support.strip()) == 0:
|
36 |
+
continue
|
37 |
+
question = row["question"]
|
38 |
+
if len(support.strip()) == 0:
|
39 |
+
continue
|
40 |
+
if support in support2id:
|
41 |
+
continue
|
42 |
+
else:
|
43 |
+
support2id[support] = example_id
|
44 |
+
if question in question2id:
|
45 |
+
continue
|
46 |
+
else:
|
47 |
+
question2id[question] = example_id
|
48 |
+
doc = {"collection_id": example_id, "text": support}
|
49 |
+
query = {"query_id": example_id, "text": row["question"]}
|
50 |
+
qrel = {
|
51 |
+
"query_id": example_id,
|
52 |
+
"collection_id": example_id,
|
53 |
+
"relevance": 1,
|
54 |
+
"answer": row["correct_answer"],
|
55 |
+
}
|
56 |
+
corpus.append(Document(**doc))
|
57 |
+
queries.append(Query(**query))
|
58 |
+
split2qrels[split].append(QRel(**qrel))
|
59 |
+
|
60 |
+
# Assembly and return:
|
61 |
+
return IRDataset(corpus=corpus, queries=queries, split2qrels=split2qrels)
|
62 |
+
|
63 |
+
|
64 |
+
if __name__ == "__main__":
|
65 |
+
# python -m nlp4web_codebase.ir.data_loaders.sciq
|
66 |
+
import time
|
67 |
+
|
68 |
+
import ujson
|
69 |
+
|
70 |
+
start = time.time()
|
71 |
+
dataset = load_sciq(verbose=True)
|
72 |
+
print(f"Loading costs: {time.time() - start}s")
|
73 |
+
print(ujson.dumps(dataset.get_stats(), indent=4))
|
74 |
+
# ________________________________________________________________________________
|
75 |
+
# [Memory] Calling __main__--home-kwang-research-nlp4web-ir-exercise-nlp4web-nlp4web-ir-data_loaders-sciq.load_sciq...
|
76 |
+
# load_sciq(verbose=True)
|
77 |
+
# |raw_train| 11679
|
78 |
+
# |raw_dev| 1000
|
79 |
+
# |raw_test| 1000
|
80 |
+
# ________________________________________________________load_sciq - 7.3s, 0.1min
|
81 |
+
# Loading costs: 7.260092735290527s
|
82 |
+
# {
|
83 |
+
# "|corpus|": 12160,
|
84 |
+
# "|queries|": 12160,
|
85 |
+
# "|qrels-train|": 10409,
|
86 |
+
# "|qrels-dev|": 875,
|
87 |
+
# "|qrels-test|": 876
|
88 |
+
# }
|
nlp4web-codebase/nlp4web_codebase/ir/models/__init__.py
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from abc import ABC, abstractmethod
|
2 |
+
from typing import Any, Dict, Type
|
3 |
+
|
4 |
+
|
5 |
+
class BaseRetriever(ABC):
|
6 |
+
|
7 |
+
@property
|
8 |
+
@abstractmethod
|
9 |
+
def index_class(self) -> Type[Any]:
|
10 |
+
pass
|
11 |
+
|
12 |
+
def get_term_weights(self, query: str, cid: str) -> Dict[str, float]:
|
13 |
+
raise NotImplementedError
|
14 |
+
|
15 |
+
@abstractmethod
|
16 |
+
def score(self, query: str, cid: str) -> float:
|
17 |
+
pass
|
18 |
+
|
19 |
+
@abstractmethod
|
20 |
+
def retrieve(self, query: str, topk: int = 10) -> Dict[str, float]:
|
21 |
+
pass
|
nlp4web-codebase/requirements.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
.
|
nlp4web-codebase/setup.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from setuptools import setup, find_packages
|
2 |
+
|
3 |
+
|
4 |
+
with open("README.md", "r", encoding="utf-8") as fh:
|
5 |
+
readme = fh.read()
|
6 |
+
|
7 |
+
setup(
|
8 |
+
name="nlp4web-codebase",
|
9 |
+
version="0.0.0",
|
10 |
+
author="Kexin Wang",
|
11 |
+
author_email="kexin.wang.2049@gmail.com",
|
12 |
+
description="Codebase of teaching materials for NLP4Web.",
|
13 |
+
long_description=readme,
|
14 |
+
long_description_content_type="text/markdown",
|
15 |
+
url="https://https://github.com/kwang2049/nlp4web-codebase",
|
16 |
+
project_urls={
|
17 |
+
"Bug Tracker": "https://github.com/kwang2049/nlp4web-codebase/issues",
|
18 |
+
},
|
19 |
+
packages=find_packages(),
|
20 |
+
classifiers=[
|
21 |
+
"Programming Language :: Python :: 3",
|
22 |
+
"License :: OSI Approved :: Apache Software License",
|
23 |
+
"Operating System :: OS Independent",
|
24 |
+
],
|
25 |
+
python_requires=">=3.10",
|
26 |
+
install_requires=[
|
27 |
+
"nltk==3.8.1",
|
28 |
+
"numpy==1.26.4",
|
29 |
+
"scipy==1.13.1",
|
30 |
+
"pandas==2.2.2",
|
31 |
+
"tqdm==4.66.5",
|
32 |
+
"ujson==5.10.0",
|
33 |
+
"joblib==1.4.2",
|
34 |
+
"datasets==3.0.1",
|
35 |
+
"pytrec_eval==0.5",
|
36 |
+
],
|
37 |
+
)
|