frameselection / app.py
Lovish Singla
Update app.py
219d623 unverified
raw
history blame
7.09 kB
import streamlit as st
import cv2
import numpy as np
from sklearn.cluster import KMeans
from tensorflow.keras.applications.vgg16 import VGG16, preprocess_input
from tensorflow.keras.preprocessing import image
import tempfile
import os
# Function to extract VGG16 features from a frame
def extract_vgg_features(frame):
frame = cv2.resize(frame, (224, 224)) # Resize frame to 224x224 (required by VGG16)
img_array = image.img_to_array(frame) # Convert frame to a NumPy array
img_array = np.expand_dims(img_array, axis=0) # Add batch dimension
img_array = preprocess_input(img_array) # Preprocess input for VGG16
features = VGG16(weights="imagenet", include_top=False, pooling="avg").predict(img_array) # Extract features
return features.flatten() # Flatten features to 1D array
# Function to compute histogram difference
def histogram_difference(frame1, frame2):
hist1 = cv2.calcHist([frame1], [0, 1, 2], None, [8, 8, 8], [0, 256, 0, 256, 0, 256]) # Compute histogram for frame1
hist2 = cv2.calcHist([frame2], [0, 1, 2], None, [8, 8, 8], [0, 256, 0, 256, 0, 256]) # Compute histogram for frame2
hist1 = cv2.normalize(hist1, hist1).flatten() # Normalize and flatten histogram
hist2 = cv2.normalize(hist2, hist2).flatten() # Normalize and flatten histogram
return cv2.compareHist(hist1, hist2, cv2.HISTCMP_BHATTACHARYYA) # Compare histograms
# Function to detect scene changes using histogram comparison
def detect_scene_changes(video_path, threshold=0.2):
cap = cv2.VideoCapture(video_path) # Open the video file
prev_frame = None
scene_change_frames = []
while True:
ret, frame = cap.read() # Read the next frame
if not ret:
break
if prev_frame is not None:
diff = histogram_difference(prev_frame, frame) # Compute histogram difference
if diff > threshold: # If difference exceeds threshold, consider it a scene change
scene_change_frames.append(frame)
prev_frame = frame # Update previous frame
cap.release() # Release the video capture object
return scene_change_frames[:5] # Limit to 5 frames
# Function to select frames based on motion
def motion_based_selection(video_path, num_frames=5):
cap = cv2.VideoCapture(video_path) # Open the video file
prev_frame = None
motion_scores = []
while True:
ret, frame = cap.read() # Read the next frame
if not ret:
break
if prev_frame is not None:
diff = cv2.absdiff(prev_frame, frame) # Compute absolute difference between frames
motion_score = np.mean(diff) # Compute mean difference as motion score
motion_scores.append((frame, motion_score)) # Save frame and motion score
prev_frame = frame # Update previous frame
cap.release() # Release the video capture object
# Sort frames by motion score and select top frames
motion_scores.sort(key=lambda x: x[1], reverse=True)
selected_frames = [x[0] for x in motion_scores[:num_frames]]
return selected_frames
# Function to cluster frames using VGG16 features
def cluster_frames(video_path, num_clusters=5):
cap = cv2.VideoCapture(video_path) # Open the video file
frames = []
features = []
while True:
ret, frame = cap.read() # Read the next frame
if not ret:
break
frames.append(frame) # Save the frame
feature = extract_vgg_features(frame) # Extract features using VGG16
features.append(feature) # Save the features
cap.release() # Release the video capture object
# Perform K-Means clustering
kmeans = KMeans(n_clusters=num_clusters, random_state=42)
clusters = kmeans.fit_predict(features) # Cluster the frames
# Select one frame from each cluster
selected_frames = []
for cluster_id in range(num_clusters):
cluster_indices = np.where(clusters == cluster_id)[0] # Find frames in the cluster
centroid_index = cluster_indices[0] # Select the first frame in the cluster
selected_frames.append(frames[centroid_index]) # Save the frame
return selected_frames
# Function to convert video to 15 FPS
def convert_to_15fps(video_path, output_path):
cap = cv2.VideoCapture(video_path) # Open the video file
fps = int(cap.get(cv2.CAP_PROP_FPS)) # Get the original FPS
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) # Get the frame width
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) # Get the frame height
# Define the codec and create VideoWriter object
fourcc = cv2.VideoWriter_fourcc(*"mp4v") # Use MP4 codec
out = cv2.VideoWriter(output_path, fourcc, 15, (width, height)) # Set output FPS to 15
while True:
ret, frame = cap.read() # Read the next frame
if not ret:
break
# Write the frame to the output video
out.write(frame)
# Skip frames to achieve 15 FPS
for _ in range(int(fps / 15) - 1):
cap.read()
cap.release() # Release the video capture object
out.release() # Release the video writer object
# Streamlit app
def main():
st.title("Video Frame Selection App")
st.write("Upload a 60-second video to extract the best 5 frames using three methods.")
# Upload video
uploaded_file = st.file_uploader("Upload a 60-second video", type=["mp4", "avi", "mov"])
if uploaded_file is not None:
# Save the uploaded video to a temporary file
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as temp_file:
temp_file.write(uploaded_file.getbuffer())
temp_video_path = temp_file.name
# Convert the video to 15 FPS
output_video_path = "temp_15fps_video.mp4"
convert_to_15fps(temp_video_path, output_video_path)
# Motion-based selection
st.header("Motion-Based Frames")
motion_frames = motion_based_selection(output_video_path, num_frames=5)
for i, frame in enumerate(motion_frames):
st.image(frame, caption=f"Motion Frame {i + 1}", use_column_width=True)
# Scene change detection
st.header("Scene Change-Based Frames")
scene_change_frames = detect_scene_changes(output_video_path, threshold=0.2)
for i, frame in enumerate(scene_change_frames):
st.image(frame, caption=f"Scene Change Frame {i + 1}", use_column_width=True)
# Clustering-based selection
st.header("Clustering-Based Frames")
clustered_frames = cluster_frames(output_video_path, num_clusters=5)
for i, frame in enumerate(clustered_frames):
st.image(frame, caption=f"Clustered Frame {i + 1}", use_column_width=True)
# Clean up temporary files
os.unlink(temp_video_path)
os.unlink(output_video_path)
# Run the app
if __name__ == "__main__":
main()