Update index.html
Browse files- index.html +57 -22
index.html
CHANGED
|
@@ -1,29 +1,64 @@
|
|
| 1 |
<!DOCTYPE html>
|
| 2 |
<html lang="en">
|
| 3 |
-
|
| 4 |
<head>
|
| 5 |
-
<meta charset="UTF-8"
|
| 6 |
-
<
|
| 7 |
-
|
| 8 |
-
<
|
| 9 |
-
<
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
</head>
|
| 11 |
-
|
| 12 |
<body>
|
| 13 |
-
<h1>
|
| 14 |
-
<
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
Click to upload image
|
| 21 |
-
<label id="example">(or try example)</label>
|
| 22 |
-
</label>
|
| 23 |
-
<label id="status">Loading model...</label>
|
| 24 |
-
<input id="upload" type="file" accept="image/*" />
|
| 25 |
|
| 26 |
-
<script
|
| 27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
<!DOCTYPE html>
|
| 2 |
<html lang="en">
|
|
|
|
| 3 |
<head>
|
| 4 |
+
<meta charset="UTF-8">
|
| 5 |
+
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
| 6 |
+
<title>Cat vs. Dog Image Classifier</title>
|
| 7 |
+
<script src="https://cdn.jsdelivr.net/npm/@xenova/transformers"></script>
|
| 8 |
+
<style>
|
| 9 |
+
body {
|
| 10 |
+
font-family: Arial, sans-serif;
|
| 11 |
+
text-align: center;
|
| 12 |
+
margin: 50px;
|
| 13 |
+
}
|
| 14 |
+
img {
|
| 15 |
+
max-width: 300px;
|
| 16 |
+
margin: 20px;
|
| 17 |
+
}
|
| 18 |
+
</style>
|
| 19 |
</head>
|
|
|
|
| 20 |
<body>
|
| 21 |
+
<h1>Cat vs. Dog Image Classifier</h1>
|
| 22 |
+
<input type="file" id="imageUploader" accept="image/*">
|
| 23 |
+
<br>
|
| 24 |
+
<img id="uploadedImage" style="display: none;" />
|
| 25 |
+
<br>
|
| 26 |
+
<button onclick="predictImage()">Predict</button>
|
| 27 |
+
<h2 id="result"></h2>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
+
<script>
|
| 30 |
+
let model;
|
| 31 |
+
async function loadModel() {
|
| 32 |
+
model = await transformers.pipeline('image-classification', 'louiecerv/cats_dogs_recognition_tf_cnn');
|
| 33 |
+
console.log("Model loaded successfully");
|
| 34 |
+
}
|
| 35 |
+
loadModel();
|
| 36 |
+
|
| 37 |
+
document.getElementById('imageUploader').addEventListener('change', function(event) {
|
| 38 |
+
const file = event.target.files[0];
|
| 39 |
+
if (file) {
|
| 40 |
+
const reader = new FileReader();
|
| 41 |
+
reader.onload = function(e) {
|
| 42 |
+
const imgElement = document.getElementById('uploadedImage');
|
| 43 |
+
imgElement.src = e.target.result;
|
| 44 |
+
imgElement.style.display = 'block';
|
| 45 |
+
};
|
| 46 |
+
reader.readAsDataURL(file);
|
| 47 |
+
}
|
| 48 |
+
});
|
| 49 |
|
| 50 |
+
async function predictImage() {
|
| 51 |
+
const imgElement = document.getElementById('uploadedImage');
|
| 52 |
+
if (!imgElement.src) {
|
| 53 |
+
alert("Please upload an image first.");
|
| 54 |
+
return;
|
| 55 |
+
}
|
| 56 |
+
|
| 57 |
+
const predictions = await model(imgElement);
|
| 58 |
+
const topPrediction = predictions[0];
|
| 59 |
+
|
| 60 |
+
document.getElementById('result').innerText = `Prediction: ${topPrediction.label} (Confidence: ${(topPrediction.score * 100).toFixed(2)}%)`;
|
| 61 |
+
}
|
| 62 |
+
</script>
|
| 63 |
+
</body>
|
| 64 |
+
</html>
|