Spaces:
Sleeping
Sleeping
import streamlit as st | |
import pandas as pd | |
from sklearn.model_selection import train_test_split | |
import pickle | |
import os | |
import pickle | |
from sklearn.metrics import accuracy_score | |
from sklearn.ensemble import RandomForestClassifier | |
penguin_df = pd.read_csv('src/penguins.csv') | |
st.write(penguin_df.head()) | |
st.subheader('Penguin Species') | |
penguin_df.dropna(inplace=True) | |
output = penguin_df['species'] | |
features = penguin_df[['island', 'bill_length_mm', 'bill_depth_mm', | |
'flipper_length_mm', 'body_mass_g', 'sex']] | |
features = pd.get_dummies(features) | |
st.write('Here are our output variables') | |
st.write(output.head()) | |
st.write('Here are our feature variables') | |
st.write(features.head()) | |
st.subheader('Model Training') | |
output = penguin_df['species'] | |
features = penguin_df[['island', 'bill_length_mm', 'bill_depth_mm', | |
'flipper_length_mm', 'body_mass_g', 'sex']] | |
features = pd.get_dummies(features) | |
output, uniques = pd.factorize(output) | |
x_train, x_test, y_train, y_test = train_test_split( | |
features, output, test_size=.8) | |
rfc = RandomForestClassifier(random_state=15) | |
rfc.fit(x_train.values, y_train) | |
y_pred = rfc.predict(x_test.values) | |
score = accuracy_score(y_pred, y_test) | |
st.write('Our accuracy score for this model is {}'.format(score)) | |
st.subheader('Save the Model Output to Pickle') | |
# Create output directory if it doesn't exist | |
output_dir = "outputs" | |
os.makedirs(output_dir, exist_ok=True) | |
# Save the model | |
model_filename = os.path.join(output_dir, "random_forest_penguin.pickle") | |
with open(model_filename, "wb") as rf_pickle: | |
pickle.dump(rfc, rf_pickle) | |
# Save the uniques or other data | |
uniques_filename = os.path.join(output_dir, "uniques_data.pickle") | |
with open(uniques_filename, "wb") as output_pickle: | |
pickle.dump(uniques, output_pickle) | |
st.write("Model saved to {}".format(model_filename)) | |
st.write("Click below to download the model.") | |
# Load the files to enable download | |
with open(model_filename, "rb") as f: | |
model_bytes = f.read() | |
st.download_button( | |
label="Download Trained Model (random_forest_penguin.pickle)", | |
data=model_bytes, | |
file_name="random_forest_penguin.pickle", | |
mime="application/octet-stream" | |
) | |
# Load the files to enable download | |
with open(uniques_filename, "rb") as f: | |
model_bytes = f.read() | |
st.download_button( | |
label="Download the data (uniques_data.pickle)", | |
data=model_bytes, | |
file_name="uniques_data.pickle", | |
mime="application/octet-stream" | |
) |