|
import tensorflow as tf |
|
import pandas as pd |
|
import numpy as np |
|
from tensorflow.keras.layers import TextVectorization |
|
|
|
df = pd.read_csv('train.csv') |
|
X = df['comment_text'] |
|
y = df[df.columns[2:]].values |
|
MAX_FEATURES = 200000 |
|
|
|
vectorizer = TextVectorization(max_tokens=MAX_FEATURES, |
|
output_sequence_length=1800, |
|
output_mode='int') |
|
vectorizer.adapt(X.values) |
|
vectorized_text = vectorizer(X.values) |
|
|
|
import gradio as gr |
|
|
|
model = tf.keras.models.load_model('toxicity.h5') |
|
|
|
def score_comment(comment): |
|
vectorized_comment = vectorizer([comment]) |
|
results = model.predict(vectorized_comment) |
|
|
|
text = '' |
|
for idx, col in enumerate(df.columns[2:]): |
|
text += '{}: {}\n'.format(col, results[0][idx]>0.5) |
|
|
|
return text |
|
|
|
interface = gr.Interface(fn=score_comment, capture_session=True, |
|
inputs=gr.inputs.Textbox(lines=2, placeholder='Comment to score'), |
|
outputs='text') |
|
interface.launch() |