lorocksUMD commited on
Commit
f295437
·
verified ·
1 Parent(s): e77f167

Update llava/model/builder.py

Browse files
Files changed (1) hide show
  1. llava/model/builder.py +167 -167
llava/model/builder.py CHANGED
@@ -1,167 +1,167 @@
1
- # Copyright 2023 Haotian Liu
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
-
16
- import os
17
- import warnings
18
- import shutil
19
-
20
- from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig, BitsAndBytesConfig
21
- import torch
22
- from llava.model import *
23
- from llava.constants import DEFAULT_IMAGE_PATCH_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
24
-
25
-
26
- def load_pretrained_model(model_path, model_base, model_name, load_8bit=False, load_4bit=False, device_map="auto", device="cuda", use_flash_attn=False, **kwargs):
27
- kwargs = {"device_map": device_map, **kwargs}
28
-
29
- if device != "cuda":
30
- kwargs['device_map'] = {"": device}
31
-
32
- if load_8bit:
33
- kwargs['load_in_8bit'] = True
34
- elif load_4bit:
35
- kwargs['load_in_4bit'] = True
36
- kwargs['quantization_config'] = BitsAndBytesConfig(
37
- load_in_4bit=True,
38
- bnb_4bit_compute_dtype=torch.float16,
39
- bnb_4bit_use_double_quant=True,
40
- bnb_4bit_quant_type='nf4'
41
- )
42
- else:
43
- kwargs['torch_dtype'] = torch.float16
44
-
45
- if use_flash_attn:
46
- kwargs['attn_implementation'] = 'flash_attention_2'
47
-
48
- if 'llava' in model_name.lower():
49
- # Load LLaVA model
50
- if 'lora' in model_name.lower() and model_base is None:
51
- warnings.warn('There is `lora` in model name but no `model_base` is provided. If you are loading a LoRA model, please provide the `model_base` argument. Detailed instruction: https://github.com/haotian-liu/LLaVA#launch-a-model-worker-lora-weights-unmerged.')
52
- if 'lora' in model_name.lower() and model_base is not None:
53
- from llava.model.language_model.llava_llama import LlavaConfig
54
- lora_cfg_pretrained = LlavaConfig.from_pretrained(model_path)
55
- tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False)
56
- print('Loading LLaVA from base model...')
57
- model = LlavaLlamaForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=lora_cfg_pretrained, **kwargs)
58
- token_num, tokem_dim = model.lm_head.out_features, model.lm_head.in_features
59
- if model.lm_head.weight.shape[0] != token_num:
60
- model.lm_head.weight = torch.nn.Parameter(torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype))
61
- model.model.embed_tokens.weight = torch.nn.Parameter(torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype))
62
-
63
- print('Loading additional LLaVA weights...')
64
- if os.path.exists(os.path.join(model_path, 'non_lora_trainables.bin')):
65
- non_lora_trainables = torch.load(os.path.join(model_path, 'non_lora_trainables.bin'), map_location='cpu')
66
- else:
67
- # this is probably from HF Hub
68
- from huggingface_hub import hf_hub_download
69
- def load_from_hf(repo_id, filename, subfolder=None):
70
- cache_file = hf_hub_download(
71
- repo_id=repo_id,
72
- filename=filename,
73
- subfolder=subfolder)
74
- return torch.load(cache_file, map_location='cpu')
75
- non_lora_trainables = load_from_hf(model_path, 'non_lora_trainables.bin')
76
- non_lora_trainables = {(k[11:] if k.startswith('base_model.') else k): v for k, v in non_lora_trainables.items()}
77
- if any(k.startswith('model.model.') for k in non_lora_trainables):
78
- non_lora_trainables = {(k[6:] if k.startswith('model.') else k): v for k, v in non_lora_trainables.items()}
79
- model.load_state_dict(non_lora_trainables, strict=False)
80
-
81
- from peft import PeftModel
82
- print('Loading LoRA weights...')
83
- model = PeftModel.from_pretrained(model, model_path)
84
- print('Merging LoRA weights...')
85
- model = model.merge_and_unload()
86
- print('Model is loaded...')
87
- elif model_base is not None:
88
- # this may be mm projector only
89
- print('Loading LLaVA from base model...')
90
- if 'mpt' in model_name.lower():
91
- if not os.path.isfile(os.path.join(model_path, 'configuration_mpt.py')):
92
- shutil.copyfile(os.path.join(model_base, 'configuration_mpt.py'), os.path.join(model_path, 'configuration_mpt.py'))
93
- tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=True)
94
- cfg_pretrained = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
95
- model = LlavaMptForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs)
96
- else:
97
- tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False)
98
- cfg_pretrained = AutoConfig.from_pretrained(model_path)
99
- model = LlavaLlamaForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs)
100
-
101
- mm_projector_weights = torch.load(os.path.join(model_path, 'mm_projector.bin'), map_location='cpu')
102
- mm_projector_weights = {k: v.to(torch.float16) for k, v in mm_projector_weights.items()}
103
- model.load_state_dict(mm_projector_weights, strict=False)
104
- else:
105
- if 'mpt' in model_name.lower():
106
- tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True)
107
- model = LlavaMptForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs)
108
- elif 'mistral' in model_name.lower():
109
- tokenizer = AutoTokenizer.from_pretrained(model_path)
110
- model = LlavaMistralForCausalLM.from_pretrained(
111
- model_path,
112
- low_cpu_mem_usage=True,
113
- **kwargs
114
- )
115
- else:
116
- tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False)
117
- model = LlavaLlamaForCausalLM.from_pretrained(
118
- model_path,
119
- low_cpu_mem_usage=True,
120
- **kwargs
121
- )
122
- else:
123
- # Load language model
124
- if model_base is not None:
125
- # PEFT model
126
- from peft import PeftModel
127
- tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False)
128
- model = AutoModelForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, **kwargs)
129
- print(f"Loading LoRA weights from {model_path}")
130
- model = PeftModel.from_pretrained(model, model_path)
131
- print(f"Merging weights")
132
- model = model.merge_and_unload()
133
- print('Convert to FP16...')
134
- model.to(torch.float16)
135
- else:
136
- use_fast = False
137
- if 'mpt' in model_name.lower():
138
- tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True)
139
- model = AutoModelForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, trust_remote_code=True, **kwargs)
140
- else:
141
- tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False)
142
- model = AutoModelForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs)
143
-
144
- image_processor = None
145
-
146
- if 'llava' in model_name.lower():
147
- mm_use_im_start_end = getattr(model.config, "mm_use_im_start_end", False)
148
- mm_use_im_patch_token = getattr(model.config, "mm_use_im_patch_token", True)
149
- if mm_use_im_patch_token:
150
- tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
151
- if mm_use_im_start_end:
152
- tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
153
- model.resize_token_embeddings(len(tokenizer))
154
-
155
- vision_tower = model.get_vision_tower()
156
- if not vision_tower.is_loaded:
157
- vision_tower.load_model(device_map=device_map)
158
- if device_map != 'auto':
159
- vision_tower.to(device=device_map, dtype=torch.float16)
160
- image_processor = vision_tower.image_processor
161
-
162
- if hasattr(model.config, "max_sequence_length"):
163
- context_len = model.config.max_sequence_length
164
- else:
165
- context_len = 2048
166
-
167
- return tokenizer, model, image_processor, context_len
 
1
+ # Copyright 2023 Haotian Liu
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+
16
+ import os
17
+ import warnings
18
+ import shutil
19
+
20
+ from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig, BitsAndBytesConfig
21
+ import torch
22
+ from llava.model import *
23
+ from llava.constants import DEFAULT_IMAGE_PATCH_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
24
+
25
+
26
+ def load_pretrained_model(model_path, model_base, model_name, load_8bit=False, load_4bit=False, device_map="auto", device="cuda", use_flash_attn=False, **kwargs):
27
+ kwargs = {"device_map": device_map, **kwargs}
28
+
29
+ if device != "cuda":
30
+ kwargs['device_map'] = {"": device}
31
+
32
+ # if load_8bit:
33
+ # kwargs['load_in_8bit'] = True
34
+ # elif load_4bit:
35
+ # kwargs['load_in_4bit'] = True
36
+ # kwargs['quantization_config'] = BitsAndBytesConfig(
37
+ # load_in_4bit=True,
38
+ # bnb_4bit_compute_dtype=torch.float16,
39
+ # bnb_4bit_use_double_quant=True,
40
+ # bnb_4bit_quant_type='nf4'
41
+ # )
42
+ # else:
43
+ # kwargs['torch_dtype'] = torch.float16
44
+
45
+ if use_flash_attn:
46
+ kwargs['attn_implementation'] = 'flash_attention_2'
47
+
48
+ if 'llava' in model_name.lower():
49
+ # Load LLaVA model
50
+ if 'lora' in model_name.lower() and model_base is None:
51
+ warnings.warn('There is `lora` in model name but no `model_base` is provided. If you are loading a LoRA model, please provide the `model_base` argument. Detailed instruction: https://github.com/haotian-liu/LLaVA#launch-a-model-worker-lora-weights-unmerged.')
52
+ if 'lora' in model_name.lower() and model_base is not None:
53
+ from llava.model.language_model.llava_llama import LlavaConfig
54
+ lora_cfg_pretrained = LlavaConfig.from_pretrained(model_path)
55
+ tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False)
56
+ print('Loading LLaVA from base model...')
57
+ model = LlavaLlamaForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=lora_cfg_pretrained, **kwargs)
58
+ token_num, tokem_dim = model.lm_head.out_features, model.lm_head.in_features
59
+ if model.lm_head.weight.shape[0] != token_num:
60
+ model.lm_head.weight = torch.nn.Parameter(torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype))
61
+ model.model.embed_tokens.weight = torch.nn.Parameter(torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype))
62
+
63
+ print('Loading additional LLaVA weights...')
64
+ if os.path.exists(os.path.join(model_path, 'non_lora_trainables.bin')):
65
+ non_lora_trainables = torch.load(os.path.join(model_path, 'non_lora_trainables.bin'), map_location='cpu')
66
+ else:
67
+ # this is probably from HF Hub
68
+ from huggingface_hub import hf_hub_download
69
+ def load_from_hf(repo_id, filename, subfolder=None):
70
+ cache_file = hf_hub_download(
71
+ repo_id=repo_id,
72
+ filename=filename,
73
+ subfolder=subfolder)
74
+ return torch.load(cache_file, map_location='cpu')
75
+ non_lora_trainables = load_from_hf(model_path, 'non_lora_trainables.bin')
76
+ non_lora_trainables = {(k[11:] if k.startswith('base_model.') else k): v for k, v in non_lora_trainables.items()}
77
+ if any(k.startswith('model.model.') for k in non_lora_trainables):
78
+ non_lora_trainables = {(k[6:] if k.startswith('model.') else k): v for k, v in non_lora_trainables.items()}
79
+ model.load_state_dict(non_lora_trainables, strict=False)
80
+
81
+ from peft import PeftModel
82
+ print('Loading LoRA weights...')
83
+ model = PeftModel.from_pretrained(model, model_path)
84
+ print('Merging LoRA weights...')
85
+ model = model.merge_and_unload()
86
+ print('Model is loaded...')
87
+ elif model_base is not None:
88
+ # this may be mm projector only
89
+ print('Loading LLaVA from base model...')
90
+ if 'mpt' in model_name.lower():
91
+ if not os.path.isfile(os.path.join(model_path, 'configuration_mpt.py')):
92
+ shutil.copyfile(os.path.join(model_base, 'configuration_mpt.py'), os.path.join(model_path, 'configuration_mpt.py'))
93
+ tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=True)
94
+ cfg_pretrained = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
95
+ model = LlavaMptForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs)
96
+ else:
97
+ tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False)
98
+ cfg_pretrained = AutoConfig.from_pretrained(model_path)
99
+ model = LlavaLlamaForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs)
100
+
101
+ mm_projector_weights = torch.load(os.path.join(model_path, 'mm_projector.bin'), map_location='cpu')
102
+ mm_projector_weights = {k: v.to(torch.float16) for k, v in mm_projector_weights.items()}
103
+ model.load_state_dict(mm_projector_weights, strict=False)
104
+ else:
105
+ if 'mpt' in model_name.lower():
106
+ tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True)
107
+ model = LlavaMptForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs)
108
+ elif 'mistral' in model_name.lower():
109
+ tokenizer = AutoTokenizer.from_pretrained(model_path)
110
+ model = LlavaMistralForCausalLM.from_pretrained(
111
+ model_path,
112
+ low_cpu_mem_usage=True,
113
+ **kwargs
114
+ )
115
+ else:
116
+ tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False)
117
+ model = LlavaLlamaForCausalLM.from_pretrained(
118
+ model_path,
119
+ low_cpu_mem_usage=True,
120
+ **kwargs
121
+ )
122
+ else:
123
+ # Load language model
124
+ if model_base is not None:
125
+ # PEFT model
126
+ from peft import PeftModel
127
+ tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False)
128
+ model = AutoModelForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, **kwargs)
129
+ print(f"Loading LoRA weights from {model_path}")
130
+ model = PeftModel.from_pretrained(model, model_path)
131
+ print(f"Merging weights")
132
+ model = model.merge_and_unload()
133
+ print('Convert to FP16...')
134
+ model.to(torch.float16)
135
+ else:
136
+ use_fast = False
137
+ if 'mpt' in model_name.lower():
138
+ tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True)
139
+ model = AutoModelForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, trust_remote_code=True, **kwargs)
140
+ else:
141
+ tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False)
142
+ model = AutoModelForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs)
143
+
144
+ image_processor = None
145
+
146
+ if 'llava' in model_name.lower():
147
+ mm_use_im_start_end = getattr(model.config, "mm_use_im_start_end", False)
148
+ mm_use_im_patch_token = getattr(model.config, "mm_use_im_patch_token", True)
149
+ if mm_use_im_patch_token:
150
+ tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
151
+ if mm_use_im_start_end:
152
+ tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
153
+ model.resize_token_embeddings(len(tokenizer))
154
+
155
+ vision_tower = model.get_vision_tower()
156
+ if not vision_tower.is_loaded:
157
+ vision_tower.load_model(device_map=device_map)
158
+ if device_map != 'auto':
159
+ vision_tower.to(device=device_map, dtype=torch.float16)
160
+ image_processor = vision_tower.image_processor
161
+
162
+ if hasattr(model.config, "max_sequence_length"):
163
+ context_len = model.config.max_sequence_length
164
+ else:
165
+ context_len = 2048
166
+
167
+ return tokenizer, model, image_processor, context_len