Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -3,9 +3,8 @@ from transformers import pipeline
|
|
3 |
import torch
|
4 |
from diffusers import DiffusionPipeline
|
5 |
|
6 |
-
|
7 |
-
|
8 |
def main():
|
|
|
9 |
classifier = pipeline("text-classification", model="lori0330/BART_FineTuned_ZeroShotClassification")
|
10 |
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
|
11 |
painter = DiffusionPipeline.from_pretrained(
|
@@ -15,10 +14,12 @@ def main():
|
|
15 |
)
|
16 |
painter.to('cuda')
|
17 |
|
|
|
18 |
st.title("Brief Report Generator")
|
19 |
st.write("Copy the text here:")
|
20 |
user_input = st.text_input("")
|
21 |
-
|
|
|
22 |
if user_input:
|
23 |
result_1 = classifier(user_input)
|
24 |
label = result_1[0]['label']
|
@@ -26,6 +27,7 @@ def main():
|
|
26 |
|
27 |
result_2 = summarizer(user_input, max_length=100, min_length=30, do_sample=False)
|
28 |
summary = result_2[0]['summary_text']
|
|
|
29 |
|
30 |
description = f"This is mainly about {label}: {summary}"
|
31 |
negative_prompt = "nsfw, lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]"
|
@@ -39,6 +41,7 @@ def main():
|
|
39 |
num_inference_steps=28
|
40 |
).images[0]
|
41 |
|
|
|
42 |
st.image(image)
|
43 |
|
44 |
if __name__ == "__main__":
|
|
|
3 |
import torch
|
4 |
from diffusers import DiffusionPipeline
|
5 |
|
|
|
|
|
6 |
def main():
|
7 |
+
# Prepare pipeline
|
8 |
classifier = pipeline("text-classification", model="lori0330/BART_FineTuned_ZeroShotClassification")
|
9 |
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
|
10 |
painter = DiffusionPipeline.from_pretrained(
|
|
|
14 |
)
|
15 |
painter.to('cuda')
|
16 |
|
17 |
+
# Edit the space
|
18 |
st.title("Brief Report Generator")
|
19 |
st.write("Copy the text here:")
|
20 |
user_input = st.text_input("")
|
21 |
+
|
22 |
+
# Check input
|
23 |
if user_input:
|
24 |
result_1 = classifier(user_input)
|
25 |
label = result_1[0]['label']
|
|
|
27 |
|
28 |
result_2 = summarizer(user_input, max_length=100, min_length=30, do_sample=False)
|
29 |
summary = result_2[0]['summary_text']
|
30 |
+
st.write(f"The summary of this text:\n{summary}")
|
31 |
|
32 |
description = f"This is mainly about {label}: {summary}"
|
33 |
negative_prompt = "nsfw, lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]"
|
|
|
41 |
num_inference_steps=28
|
42 |
).images[0]
|
43 |
|
44 |
+
st.write(f"The attached image:\n")
|
45 |
st.image(image)
|
46 |
|
47 |
if __name__ == "__main__":
|