Spaces:
Build error
Build error
Keane Moraes
commited on
Commit
•
d87b50e
1
Parent(s):
28e14c5
clustering works
Browse files- .gitignore +2 -1
- .vscode/settings.json +24 -0
- clustering.py +2 -0
- topics.py +14 -22
- utils.py +51 -10
.gitignore
CHANGED
@@ -1,2 +1,3 @@
|
|
1 |
/__pycache__*
|
2 |
-
recursive-exclude * *.py[co]
|
|
|
|
1 |
/__pycache__*
|
2 |
+
recursive-exclude * *.py[co]
|
3 |
+
/.vscode*
|
.vscode/settings.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"editor.tokenColorCustomizations": {
|
3 |
+
"textMateRules": [
|
4 |
+
{
|
5 |
+
"scope": "googletest.failed",
|
6 |
+
"settings": {
|
7 |
+
"foreground": "#f00"
|
8 |
+
}
|
9 |
+
},
|
10 |
+
{
|
11 |
+
"scope": "googletest.passed",
|
12 |
+
"settings": {
|
13 |
+
"foreground": "#0f0"
|
14 |
+
}
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"scope": "googletest.run",
|
18 |
+
"settings": {
|
19 |
+
"foreground": "#0f0"
|
20 |
+
}
|
21 |
+
}
|
22 |
+
]
|
23 |
+
}
|
24 |
+
}
|
clustering.py
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
import spacy
|
2 |
+
import pandas as pd
|
topics.py
CHANGED
@@ -1,37 +1,29 @@
|
|
1 |
import openai
|
2 |
from utils import *
|
3 |
-
import mdforest
|
4 |
-
import pandas as pd
|
5 |
-
import spacy
|
6 |
|
7 |
-
class
|
8 |
|
9 |
EMBEDDING_MAX_TOKENS = 1023
|
10 |
|
11 |
def __init__(self, text:str) -> None:
|
12 |
-
cleaned_text = mdforest.clean_markdown(text)
|
13 |
self.keywords = []
|
14 |
-
|
15 |
-
self.
|
16 |
-
self.text = create_nest_sentences(self.corpus, self.EMBEDDING_MAX_TOKENS)
|
17 |
self.model = load_keyword_model()
|
18 |
-
self.embedder = load_embedder()
|
19 |
-
|
20 |
|
21 |
def generate_topics(self) -> list:
|
22 |
-
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
-
def generate_embeddings(self) -> list:
|
27 |
-
# generate embeddings for all the sentences
|
28 |
-
nlp = spacy.load("en_core_web_sm")
|
29 |
-
final_embeddings = []
|
30 |
-
for text in self.text:
|
31 |
-
print(text[0])
|
32 |
-
doc = nlp(text[0])
|
33 |
-
sentence_embeddings = [sent.vector for sent in doc.sents]
|
34 |
-
final_embeddings += sentence_embeddings
|
35 |
|
36 |
|
37 |
|
|
|
1 |
import openai
|
2 |
from utils import *
|
|
|
|
|
|
|
3 |
|
4 |
+
class TopicModelling:
|
5 |
|
6 |
EMBEDDING_MAX_TOKENS = 1023
|
7 |
|
8 |
def __init__(self, text:str) -> None:
|
|
|
9 |
self.keywords = []
|
10 |
+
self.corpus = text
|
11 |
+
# self.text = create_nest_sentences(self.corpus, self.EMBEDDING_MAX_TOKENS)
|
|
|
12 |
self.model = load_keyword_model()
|
|
|
|
|
13 |
|
14 |
def generate_topics(self) -> list:
|
15 |
+
|
16 |
+
keywords = self.model.extract_keywords(self.corpus, keyphrase_ngram_range=(1, 1), stop_words=None)
|
17 |
+
topics = self.model.extract_keywords(self.corpus, keyphrase_ngram_range=(1, 2), stop_words=None)
|
18 |
+
keywords = [kw[0] for kw in keywords] + [kw[0] for kw in topics]
|
19 |
+
concepts = self.model.extract_keywords(self.corpus, keyphrase_ngram_range=(3, 3), stop_words='english', top_n=5)
|
20 |
+
concepts = [kw[0] for kw in concepts]
|
21 |
+
|
22 |
+
return keywords, concepts
|
23 |
+
|
24 |
+
|
25 |
+
|
26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
|
29 |
|
utils.py
CHANGED
@@ -4,12 +4,11 @@ from nltk.corpus import stopwords
|
|
4 |
from transformers import AutoTokenizer
|
5 |
import re
|
6 |
import spacy
|
|
|
|
|
7 |
from sentence_transformers import SentenceTransformer
|
8 |
|
9 |
-
|
10 |
-
# def load_nlp():
|
11 |
-
# nlp =
|
12 |
-
|
13 |
|
14 |
@st.cache_data
|
15 |
def load_autotoken():
|
@@ -18,12 +17,13 @@ def load_autotoken():
|
|
18 |
|
19 |
@st.cache_data
|
20 |
def load_keyword_model():
|
21 |
-
|
22 |
-
|
|
|
23 |
|
24 |
@st.cache_data
|
25 |
-
def
|
26 |
-
embedder = SentenceTransformer(
|
27 |
return embedder
|
28 |
|
29 |
def create_nest_sentences(document:str, token_max_length = 1023):
|
@@ -32,7 +32,7 @@ def create_nest_sentences(document:str, token_max_length = 1023):
|
|
32 |
length = 0
|
33 |
tokenizer = load_autotoken()
|
34 |
|
35 |
-
for sentence in re.split(r'(?<=[^A-Z].[.?]) +(?=[A-Z])', document.replace("\n", '
|
36 |
tokens_in_sentence = tokenizer(str(sentence), truncation=False, padding=False)[0] # hugging face transformer tokenizer
|
37 |
length += len(tokens_in_sentence)
|
38 |
|
@@ -51,7 +51,7 @@ def preprocess(text) -> str:
|
|
51 |
stop_words = set(stopwords.words("english"))
|
52 |
text = text.lower()
|
53 |
text = ''.join([c for c in text if c not in ('!', '.', ',', '?', ':', ';', '"', "'", '-', '(', ')')])
|
54 |
-
words = text.split()
|
55 |
words = [w for w in words if not w in stop_words]
|
56 |
return " ".join(words)
|
57 |
|
@@ -64,3 +64,44 @@ def generate_keywords(kw_model, document: str) -> list:
|
|
64 |
for extraction in complex_extractions:
|
65 |
final_topics.append(extraction[0])
|
66 |
return final_topics
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
from transformers import AutoTokenizer
|
5 |
import re
|
6 |
import spacy
|
7 |
+
from sklearn.cluster import KMeans, AgglomerativeClustering
|
8 |
+
import numpy as np
|
9 |
from sentence_transformers import SentenceTransformer
|
10 |
|
11 |
+
MODEL = 'all-MiniLM-L6-v2'
|
|
|
|
|
|
|
12 |
|
13 |
@st.cache_data
|
14 |
def load_autotoken():
|
|
|
17 |
|
18 |
@st.cache_data
|
19 |
def load_keyword_model():
|
20 |
+
sentence_model = load_model()
|
21 |
+
kw_model = KeyBERT(model=sentence_model)
|
22 |
+
return kw_model
|
23 |
|
24 |
@st.cache_data
|
25 |
+
def load_model():
|
26 |
+
embedder = SentenceTransformer(MODEL)
|
27 |
return embedder
|
28 |
|
29 |
def create_nest_sentences(document:str, token_max_length = 1023):
|
|
|
32 |
length = 0
|
33 |
tokenizer = load_autotoken()
|
34 |
|
35 |
+
for sentence in re.split(r'(?<=[^A-Z].[.?]) +(?=[A-Z])', document.replace("\n", '.')):
|
36 |
tokens_in_sentence = tokenizer(str(sentence), truncation=False, padding=False)[0] # hugging face transformer tokenizer
|
37 |
length += len(tokens_in_sentence)
|
38 |
|
|
|
51 |
stop_words = set(stopwords.words("english"))
|
52 |
text = text.lower()
|
53 |
text = ''.join([c for c in text if c not in ('!', '.', ',', '?', ':', ';', '"', "'", '-', '(', ')')])
|
54 |
+
words = text.split()
|
55 |
words = [w for w in words if not w in stop_words]
|
56 |
return " ".join(words)
|
57 |
|
|
|
64 |
for extraction in complex_extractions:
|
65 |
final_topics.append(extraction[0])
|
66 |
return final_topics
|
67 |
+
|
68 |
+
def cluster_based_on_topics(embedder, text1:str, text2:str, num_clusters:int = 2):
|
69 |
+
nlp = spacy.load("en_core_web_sm")
|
70 |
+
|
71 |
+
# Preprocess and tokenize the texts
|
72 |
+
doc1 = nlp(preprocess(text1))
|
73 |
+
doc2 = nlp(preprocess(text2))
|
74 |
+
|
75 |
+
# Extract sentences from the texts
|
76 |
+
sentences1 = [sent.text for sent in doc1.sents]
|
77 |
+
sentences2 = [sent.text for sent in doc2.sents]
|
78 |
+
all_sentences = sentences1 + sentences2
|
79 |
+
|
80 |
+
with open('insight1_sent.txt', 'w') as f:
|
81 |
+
for item in sentences1:
|
82 |
+
f.write("%s\n" % item)
|
83 |
+
|
84 |
+
with open('insight2_sent.txt', 'w') as f:
|
85 |
+
for item in sentences2:
|
86 |
+
f.write("%s\n" % item)
|
87 |
+
|
88 |
+
# Generate sentence embeddings for each sentence
|
89 |
+
sentence_embeddings1 = embedder.encode(sentences1)
|
90 |
+
sentence_embeddings2 = embedder.encode(sentences2)
|
91 |
+
all_embeddings = np.concatenate((sentence_embeddings1, sentence_embeddings2), axis=0)
|
92 |
+
|
93 |
+
# Normalize the embeddings to unit length
|
94 |
+
all_embeddings = all_embeddings / np.linalg.norm(all_embeddings, axis=1, keepdims=True)
|
95 |
+
|
96 |
+
# Perform kmean clustering
|
97 |
+
clustering_model = AgglomerativeClustering(n_clusters=None, distance_threshold=1.5)
|
98 |
+
clustering_model.fit(all_embeddings)
|
99 |
+
cluster_assignment = clustering_model.labels_
|
100 |
+
|
101 |
+
clustered_sentences = {}
|
102 |
+
for sentence_id, cluster_id in enumerate(cluster_assignment):
|
103 |
+
if cluster_id not in clustered_sentences:
|
104 |
+
clustered_sentences[cluster_id] = []
|
105 |
+
clustered_sentences[cluster_id].append(all_sentences[sentence_id])
|
106 |
+
|
107 |
+
return clustered_sentences
|