ObjectDetection / app.py
lopesdri's picture
Update app.py
d36ea61
raw
history blame
929 Bytes
import torch
import cv2
import numpy as np
import gradio as gr
# load model
model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True)
# set model parameters
model.conf = 0.25 # NMS confidence threshold
model.iou = 0.45 # NMS IoU threshold
model.agnostic = False # NMS class-agnostic
model.multi_label = False # NMS multiple labels per box
model.max_det = 1000 # maximum number of detections per image
def detect(img):
# perform inference
results = model(img, size=640)
# inference with test time augmentation
results = model(img, augment=True)
# parse results
predictions = results.pred[0]
boxes = predictions[:, :4] # x1, y1, x2, y2
scores = predictions[:, 4]
categories = predictions[:, 5]
return results
# show detection bounding boxes on image
img = gr.inputs.Image(shape=(192, 192))
intf = gr.Interface(fn=detect, inputs=img, outputs='image')
intf.launch(inline=False)