ObjectDetection / app.py
lopesdri's picture
Update app.py
47ea545
raw
history blame
898 Bytes
import torch
import cv2
import numpy as np
import gradio as gr
from PIL import Image
model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True)
model.conf = 0.25
model.iou = 0.45
model.agnostic = False
model.multi_label = False
model.max_det = 1000
def detect(img):
results = model(img, size=640)
predictions = results.pred[0]
boxes = predictions[:, :4] # x1, y1, x2, y2
scores = predictions[:, 4]
categories = predictions[:, 5]
new_image = np.squeeze(results.render())
return new_image
css = ".output-image, .input-image, .image-preview {height: 600px !important}"
iface = gr.Interface(fn=detect,
inputs=gr.inputs.Image(type="numpy",),
outputs=gr.outputs.Image(type="numpy",),
css=css,
enable_queue=True)
iface.launch(debug=True, inline=True)