Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
from torchvision.transforms import ToTensor | |
from torchvision.models import resnet50 | |
from PIL import Image | |
import torch.nn as nn | |
# Load your PyTorch model | |
model = resnet50(pretrained=False) | |
model.fc = nn.Linear(model.fc.in_features, 2) | |
model.load_state_dict(torch.load("model.pth", map_location=torch.device('cpu'))) | |
classes = ['bom', 'ruim'] | |
# Define the function for image classification | |
def classify_image(image): | |
image_tensor = ToTensor()(image).unsqueeze(0) | |
# Perform inference using your PyTorch model | |
with torch.no_grad(): | |
model.eval() | |
outputs = model(image_tensor) | |
_, predicted = torch.max(outputs.data, 1) | |
return classes[predicted.item()] | |
# Define the Gradio interface | |
inputs = gr.Image() | |
outputs = gr.Label(num_top_classes=1) | |
interface = gr.Interface(fn=classify_image, inputs=inputs, outputs=outputs) | |
interface.launch(debug=True) |