Spaces:
Sleeping
Sleeping
Upload app.py with huggingface_hub
Browse files
app.py
ADDED
|
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
os.environ.setdefault("HF_HOME", "/tmp/hf")
|
| 3 |
+
os.environ.setdefault("HF_HUB_CACHE", "/tmp/hf/hub")
|
| 4 |
+
os.environ.setdefault("TRANSFORMERS_CACHE", "/tmp/hf/transformers")
|
| 5 |
+
|
| 6 |
+
from transformers import AutoModel
|
| 7 |
+
from huggingface_hub import hf_hub_download
|
| 8 |
+
import torch
|
| 9 |
+
import gradio as gr
|
| 10 |
+
import pickle
|
| 11 |
+
|
| 12 |
+
MODEL_ID = "loocorez/nanochat-sft-d20-test"
|
| 13 |
+
|
| 14 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 15 |
+
|
| 16 |
+
# Load model via Auto* with trust_remote_code
|
| 17 |
+
model = AutoModel.from_pretrained(MODEL_ID, trust_remote_code=True)
|
| 18 |
+
model = model.to(device)
|
| 19 |
+
model.eval()
|
| 20 |
+
|
| 21 |
+
# Load tokenizer.pkl directly (avoid AutoTokenizer mapping issues)
|
| 22 |
+
tok_path = hf_hub_download(MODEL_ID, filename="tokenizer.pkl")
|
| 23 |
+
|
| 24 |
+
class PklTokenizer:
|
| 25 |
+
def __init__(self, pkl_file):
|
| 26 |
+
with open(pkl_file, "rb") as f:
|
| 27 |
+
self.enc = pickle.load(f)
|
| 28 |
+
self._bos = self.enc.encode_single_token("<|bos|>")
|
| 29 |
+
def get_bos_token_id(self):
|
| 30 |
+
return self._bos
|
| 31 |
+
def encode(self, text, prepend=None):
|
| 32 |
+
ids = self.enc.encode_ordinary(text)
|
| 33 |
+
if prepend is not None:
|
| 34 |
+
ids = [prepend] + ids
|
| 35 |
+
return ids
|
| 36 |
+
def decode(self, ids):
|
| 37 |
+
return self.enc.decode(ids)
|
| 38 |
+
|
| 39 |
+
tokenizer = PklTokenizer(tok_path)
|
| 40 |
+
|
| 41 |
+
def complete(prompt, max_new_tokens=64):
|
| 42 |
+
input_ids = tokenizer.encode(prompt, prepend=tokenizer.get_bos_token_id())
|
| 43 |
+
ids = torch.tensor([input_ids], dtype=torch.long, device=device)
|
| 44 |
+
with torch.inference_mode():
|
| 45 |
+
for _ in range(max_new_tokens):
|
| 46 |
+
outputs = model(input_ids=ids)
|
| 47 |
+
logits = outputs["logits"] if isinstance(outputs, dict) else outputs.logits
|
| 48 |
+
next_token = torch.argmax(logits[:, -1, :], dim=-1, keepdim=True)
|
| 49 |
+
ids = torch.cat([ids, next_token], dim=1)
|
| 50 |
+
return tokenizer.decode(ids[0].tolist())
|
| 51 |
+
|
| 52 |
+
with gr.Blocks() as demo:
|
| 53 |
+
gr.Markdown("# NanoChat Transformers Demo (SFT d20)")
|
| 54 |
+
inp = gr.Textbox(value="The capital of Belgium is ")
|
| 55 |
+
max_toks = gr.Slider(1, 256, value=64, step=1, label="Max new tokens")
|
| 56 |
+
out = gr.Textbox()
|
| 57 |
+
btn = gr.Button("Generate")
|
| 58 |
+
btn.click(complete, [inp, max_toks], [out])
|
| 59 |
+
|
| 60 |
+
demo.launch()
|
| 61 |
+
|
| 62 |
+
|