Spaces:
Sleeping
Sleeping
Upload app.py with huggingface_hub
Browse files
app.py
CHANGED
|
@@ -3,17 +3,21 @@ os.environ.setdefault("HF_HOME", "/tmp/hf")
|
|
| 3 |
os.environ.setdefault("HF_HUB_CACHE", "/tmp/hf/hub")
|
| 4 |
os.environ.setdefault("TRANSFORMERS_CACHE", "/tmp/hf/transformers")
|
| 5 |
|
| 6 |
-
from
|
|
|
|
| 7 |
import torch
|
| 8 |
import gradio as gr
|
| 9 |
import pickle
|
| 10 |
-
import json
|
| 11 |
-
from nanochat.gpt import GPT, GPTConfig
|
| 12 |
|
| 13 |
MODEL_ID = "loocorez/nanochat-mid-d20-test"
|
| 14 |
|
| 15 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
# Load tokenizer.pkl directly (avoid AutoTokenizer mapping issues)
|
| 18 |
tok_path = hf_hub_download(MODEL_ID, filename="tokenizer.pkl")
|
| 19 |
|
|
@@ -34,41 +38,15 @@ class PklTokenizer:
|
|
| 34 |
|
| 35 |
tokenizer = PklTokenizer(tok_path)
|
| 36 |
|
| 37 |
-
# Load model weights directly using nanochat GPT to avoid Conv1D mismatch
|
| 38 |
-
local_dir = snapshot_download(MODEL_ID)
|
| 39 |
-
with open(os.path.join(local_dir, "config.json"), "r") as f:
|
| 40 |
-
meta = json.load(f)
|
| 41 |
-
cfg = GPTConfig(
|
| 42 |
-
sequence_len=meta.get("sequence_len", 2048),
|
| 43 |
-
vocab_size=meta["vocab_size"],
|
| 44 |
-
n_layer=meta["n_layer"],
|
| 45 |
-
n_head=meta["n_head"],
|
| 46 |
-
n_kv_head=meta["n_kv_head"],
|
| 47 |
-
n_embd=meta["n_embd"],
|
| 48 |
-
)
|
| 49 |
-
with torch.device("meta"):
|
| 50 |
-
model = GPT(cfg)
|
| 51 |
-
model.to_empty(device=device)
|
| 52 |
-
model.init_weights()
|
| 53 |
-
weights_path = os.path.join(local_dir, "pytorch_model.bin")
|
| 54 |
-
state = torch.load(weights_path, map_location=device)
|
| 55 |
-
state = {k.lstrip("_orig_mod."): v for k, v in state.items()}
|
| 56 |
-
model.load_state_dict(state, strict=True, assign=True)
|
| 57 |
-
# Ensure rotary buffers and weights are bf16 as expected by model
|
| 58 |
-
model = model.to(device).to(dtype=torch.bfloat16)
|
| 59 |
-
model.eval()
|
| 60 |
-
|
| 61 |
def complete(prompt, max_new_tokens=64):
|
| 62 |
input_ids = tokenizer.encode(prompt, prepend=tokenizer.get_bos_token_id())
|
| 63 |
ids = torch.tensor([input_ids], dtype=torch.long, device=device)
|
| 64 |
with torch.inference_mode():
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
next_token = torch.argmax(logits, dim=-1, keepdim=True)
|
| 71 |
-
ids = torch.cat([ids, next_token], dim=1)
|
| 72 |
return tokenizer.decode(ids[0].tolist())
|
| 73 |
|
| 74 |
with gr.Blocks() as demo:
|
|
|
|
| 3 |
os.environ.setdefault("HF_HUB_CACHE", "/tmp/hf/hub")
|
| 4 |
os.environ.setdefault("TRANSFORMERS_CACHE", "/tmp/hf/transformers")
|
| 5 |
|
| 6 |
+
from transformers import AutoModel
|
| 7 |
+
from huggingface_hub import hf_hub_download
|
| 8 |
import torch
|
| 9 |
import gradio as gr
|
| 10 |
import pickle
|
|
|
|
|
|
|
| 11 |
|
| 12 |
MODEL_ID = "loocorez/nanochat-mid-d20-test"
|
| 13 |
|
| 14 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 15 |
|
| 16 |
+
# Load model via Auto* with trust_remote_code
|
| 17 |
+
model = AutoModel.from_pretrained(MODEL_ID, trust_remote_code=True)
|
| 18 |
+
model = model.to(device)
|
| 19 |
+
model.eval()
|
| 20 |
+
|
| 21 |
# Load tokenizer.pkl directly (avoid AutoTokenizer mapping issues)
|
| 22 |
tok_path = hf_hub_download(MODEL_ID, filename="tokenizer.pkl")
|
| 23 |
|
|
|
|
| 38 |
|
| 39 |
tokenizer = PklTokenizer(tok_path)
|
| 40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
def complete(prompt, max_new_tokens=64):
|
| 42 |
input_ids = tokenizer.encode(prompt, prepend=tokenizer.get_bos_token_id())
|
| 43 |
ids = torch.tensor([input_ids], dtype=torch.long, device=device)
|
| 44 |
with torch.inference_mode():
|
| 45 |
+
for _ in range(max_new_tokens):
|
| 46 |
+
outputs = model(input_ids=ids)
|
| 47 |
+
logits = outputs["logits"] if isinstance(outputs, dict) else outputs.logits
|
| 48 |
+
next_token = torch.argmax(logits[:, -1, :], dim=-1, keepdim=True)
|
| 49 |
+
ids = torch.cat([ids, next_token], dim=1)
|
|
|
|
|
|
|
| 50 |
return tokenizer.decode(ids[0].tolist())
|
| 51 |
|
| 52 |
with gr.Blocks() as demo:
|