Spaces:
Sleeping
Sleeping
import torch | |
from PIL import ImageDraw | |
import numpy as np | |
import os | |
import gc | |
torch_device = "cuda" if torch.cuda.is_available() else "cpu" | |
def draw_box(pil_img, bboxes, phrases): | |
draw = ImageDraw.Draw(pil_img) | |
# font = ImageFont.truetype('./FreeMono.ttf', 25) | |
for obj_bbox, phrase in zip(bboxes, phrases): | |
x_0, y_0, x_1, y_1 = obj_bbox[0], obj_bbox[1], obj_bbox[2], obj_bbox[3] | |
draw.rectangle([int(x_0 * 512), int(y_0 * 512), int(x_1 * 512), int(y_1 * 512)], outline='red', width=5) | |
draw.text((int(x_0 * 512) + 5, int(y_0 * 512) + 5), phrase, font=None, fill=(255, 0, 0)) | |
return pil_img | |
def get_centered_box(box, horizontal_center_only=True): | |
x_min, y_min, x_max, y_max = box | |
w = x_max - x_min | |
if horizontal_center_only: | |
return [0.5 - w/2, y_min, 0.5 + w/2, y_max] | |
h = y_max - y_min | |
return [0.5 - w/2, 0.5 - h/2, 0.5 + w/2, 0.5 + h/2] | |
# NOTE: this changes the behavior of the function | |
def proportion_to_mask(obj_box, H, W, use_legacy=False, return_np=False): | |
x_min, y_min, x_max, y_max = scale_proportion(obj_box, H, W, use_legacy) | |
if return_np: | |
mask = np.zeros((H, W)) | |
else: | |
mask = torch.zeros(H, W).to(torch_device) | |
mask[y_min: y_max, x_min: x_max] = 1. | |
return mask | |
def scale_proportion(obj_box, H, W, use_legacy=False): | |
if use_legacy: | |
# Bias towards the top-left corner | |
x_min, y_min, x_max, y_max = int(obj_box[0] * W), int(obj_box[1] * H), int(obj_box[2] * W), int(obj_box[3] * H) | |
else: | |
# Separately rounding box_w and box_h to allow shift invariant box sizes. Otherwise box sizes may change when both coordinates being rounded end with ".5". | |
x_min, y_min = round(obj_box[0] * W), round(obj_box[1] * H) | |
box_w, box_h = round((obj_box[2] - obj_box[0]) * W), round((obj_box[3] - obj_box[1]) * H) | |
x_max, y_max = x_min + box_w, y_min + box_h | |
x_min, y_min = max(x_min, 0), max(y_min, 0) | |
x_max, y_max = min(x_max, W), min(y_max, H) | |
return x_min, y_min, x_max, y_max | |
def binary_mask_to_box(mask, enlarge_box_by_one=True, w_scale=1, h_scale=1): | |
if isinstance(mask, torch.Tensor): | |
mask_loc = torch.where(mask) | |
else: | |
mask_loc = np.where(mask) | |
height, width = mask.shape | |
if len(mask_loc) == 0: | |
raise ValueError('The mask is empty') | |
if enlarge_box_by_one: | |
ymin, ymax = max(min(mask_loc[0]) - 1, 0), min(max(mask_loc[0]) + 1, height) | |
xmin, xmax = max(min(mask_loc[1]) - 1, 0), min(max(mask_loc[1]) + 1, width) | |
else: | |
ymin, ymax = min(mask_loc[0]), max(mask_loc[0]) | |
xmin, xmax = min(mask_loc[1]), max(mask_loc[1]) | |
box = [xmin * w_scale, ymin * h_scale, xmax * w_scale, ymax * h_scale] | |
return box | |
def binary_mask_to_box_mask(mask, to_device=True): | |
box = binary_mask_to_box(mask) | |
x_min, y_min, x_max, y_max = box | |
H, W = mask.shape | |
mask = torch.zeros(H, W) | |
if to_device: | |
mask = mask.to(torch_device) | |
mask[y_min: y_max+1, x_min: x_max+1] = 1. | |
return mask | |
def binary_mask_to_center(mask, normalize=False): | |
""" | |
This computes the mass center of the mask. | |
normalize: the coords range from 0 to 1 | |
Reference: https://stackoverflow.com/a/66184125 | |
""" | |
h, w = mask.shape | |
total = mask.sum() | |
if isinstance(mask, torch.Tensor): | |
x_coord = ((mask.sum(dim=0) @ torch.arange(w)) / total).item() | |
y_coord = ((mask.sum(dim=1) @ torch.arange(h)) / total).item() | |
else: | |
x_coord = (mask.sum(axis=0) @ np.arange(w)) / total | |
y_coord = (mask.sum(axis=1) @ np.arange(h)) / total | |
if normalize: | |
x_coord, y_coord = x_coord / w, y_coord / h | |
return x_coord, y_coord | |
def iou(mask, masks, eps=1e-6): | |
# mask: [h, w], masks: [n, h, w] | |
mask = mask[None].astype(bool) | |
masks = masks.astype(bool) | |
i = (mask & masks).sum(axis=(1,2)) | |
u = (mask | masks).sum(axis=(1,2)) | |
return i / (u + eps) | |
def free_memory(): | |
gc.collect() | |
torch.cuda.empty_cache() | |
def expand_overall_bboxes(overall_bboxes): | |
""" | |
Expand overall bboxes from a 3d list to 2d list: | |
Input: [[box 1 for phrase 1, box 2 for phrase 1], ...] | |
Output: [box 1, box 2, ...] | |
""" | |
return sum(overall_bboxes, start=[]) | |
def shift_tensor(tensor, x_offset, y_offset, base_w=8, base_h=8, offset_normalized=False, ignore_last_dim=False): | |
"""base_w and base_h: make sure the shift is aligned in the latent and multiple levels of cross attention""" | |
if ignore_last_dim: | |
tensor_h, tensor_w = tensor.shape[-3:-1] | |
else: | |
tensor_h, tensor_w = tensor.shape[-2:] | |
if offset_normalized: | |
assert tensor_h % base_h == 0 and tensor_w % base_w == 0, f"{tensor_h, tensor_w} is not a multiple of {base_h, base_w}" | |
scale_from_base_h, scale_from_base_w = tensor_h // base_h, tensor_w // base_w | |
x_offset, y_offset = round(x_offset * base_w) * scale_from_base_w, round(y_offset * base_h) * scale_from_base_h | |
new_tensor = torch.zeros_like(tensor) | |
overlap_w = tensor_w - abs(x_offset) | |
overlap_h = tensor_h - abs(y_offset) | |
if y_offset >= 0: | |
y_src_start = 0 | |
y_dest_start = y_offset | |
else: | |
y_src_start = -y_offset | |
y_dest_start = 0 | |
if x_offset >= 0: | |
x_src_start = 0 | |
x_dest_start = x_offset | |
else: | |
x_src_start = -x_offset | |
x_dest_start = 0 | |
if ignore_last_dim: | |
# For cross attention maps, the third to last and the second to last are the 2D dimensions after unflatten. | |
new_tensor[..., y_dest_start:y_dest_start+overlap_h, x_dest_start:x_dest_start+overlap_w, :] = tensor[..., y_src_start:y_src_start+overlap_h, x_src_start:x_src_start+overlap_w, :] | |
else: | |
new_tensor[..., y_dest_start:y_dest_start+overlap_h, x_dest_start:x_dest_start+overlap_w] = tensor[..., y_src_start:y_src_start+overlap_h, x_src_start:x_src_start+overlap_w] | |
return new_tensor | |