Spaces:
Running
on
T4
Running
on
T4
# Copyright 2023 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import warnings | |
from typing import Callable, Optional, Union | |
import torch | |
import torch.nn.functional as F | |
from torch import nn | |
from diffusers.utils import deprecate, logging, maybe_allow_in_graph | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
class Attention(nn.Module): | |
r""" | |
A cross attention layer. | |
Parameters: | |
query_dim (`int`): The number of channels in the query. | |
cross_attention_dim (`int`, *optional*): | |
The number of channels in the encoder_hidden_states. If not given, defaults to `query_dim`. | |
heads (`int`, *optional*, defaults to 8): The number of heads to use for multi-head attention. | |
dim_head (`int`, *optional*, defaults to 64): The number of channels in each head. | |
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. | |
bias (`bool`, *optional*, defaults to False): | |
Set to `True` for the query, key, and value linear layers to contain a bias parameter. | |
""" | |
def __init__( | |
self, | |
query_dim: int, | |
cross_attention_dim: Optional[int] = None, | |
heads: int = 8, | |
dim_head: int = 64, | |
dropout: float = 0.0, | |
bias=False, | |
upcast_attention: bool = False, | |
upcast_softmax: bool = False, | |
cross_attention_norm: Optional[str] = None, | |
cross_attention_norm_num_groups: int = 32, | |
added_kv_proj_dim: Optional[int] = None, | |
norm_num_groups: Optional[int] = None, | |
spatial_norm_dim: Optional[int] = None, | |
out_bias: bool = True, | |
scale_qk: bool = True, | |
only_cross_attention: bool = False, | |
eps: float = 1e-5, | |
rescale_output_factor: float = 1.0, | |
residual_connection: bool = False, | |
_from_deprecated_attn_block=False, | |
processor: Optional["AttnProcessor"] = None, | |
): | |
super().__init__() | |
inner_dim = dim_head * heads | |
cross_attention_dim = cross_attention_dim if cross_attention_dim is not None else query_dim | |
self.upcast_attention = upcast_attention | |
self.upcast_softmax = upcast_softmax | |
self.rescale_output_factor = rescale_output_factor | |
self.residual_connection = residual_connection | |
# we make use of this private variable to know whether this class is loaded | |
# with an deprecated state dict so that we can convert it on the fly | |
self._from_deprecated_attn_block = _from_deprecated_attn_block | |
self.scale_qk = scale_qk | |
self.scale = dim_head**-0.5 if self.scale_qk else 1.0 | |
self.heads = heads | |
# for slice_size > 0 the attention score computation | |
# is split across the batch axis to save memory | |
# You can set slice_size with `set_attention_slice` | |
self.sliceable_head_dim = heads | |
self.added_kv_proj_dim = added_kv_proj_dim | |
self.only_cross_attention = only_cross_attention | |
if self.added_kv_proj_dim is None and self.only_cross_attention: | |
raise ValueError( | |
"`only_cross_attention` can only be set to True if `added_kv_proj_dim` is not None. Make sure to set either `only_cross_attention=False` or define `added_kv_proj_dim`." | |
) | |
if norm_num_groups is not None: | |
self.group_norm = nn.GroupNorm(num_channels=query_dim, num_groups=norm_num_groups, eps=eps, affine=True) | |
else: | |
self.group_norm = None | |
if spatial_norm_dim is not None: | |
self.spatial_norm = SpatialNorm(f_channels=query_dim, zq_channels=spatial_norm_dim) | |
else: | |
self.spatial_norm = None | |
if cross_attention_norm is None: | |
self.norm_cross = None | |
elif cross_attention_norm == "layer_norm": | |
self.norm_cross = nn.LayerNorm(cross_attention_dim) | |
elif cross_attention_norm == "group_norm": | |
if self.added_kv_proj_dim is not None: | |
# The given `encoder_hidden_states` are initially of shape | |
# (batch_size, seq_len, added_kv_proj_dim) before being projected | |
# to (batch_size, seq_len, cross_attention_dim). The norm is applied | |
# before the projection, so we need to use `added_kv_proj_dim` as | |
# the number of channels for the group norm. | |
norm_cross_num_channels = added_kv_proj_dim | |
else: | |
norm_cross_num_channels = cross_attention_dim | |
self.norm_cross = nn.GroupNorm( | |
num_channels=norm_cross_num_channels, num_groups=cross_attention_norm_num_groups, eps=1e-5, affine=True | |
) | |
else: | |
raise ValueError( | |
f"unknown cross_attention_norm: {cross_attention_norm}. Should be None, 'layer_norm' or 'group_norm'" | |
) | |
self.to_q = nn.Linear(query_dim, inner_dim, bias=bias) | |
if not self.only_cross_attention: | |
# only relevant for the `AddedKVProcessor` classes | |
self.to_k = nn.Linear(cross_attention_dim, inner_dim, bias=bias) | |
self.to_v = nn.Linear(cross_attention_dim, inner_dim, bias=bias) | |
else: | |
self.to_k = None | |
self.to_v = None | |
if self.added_kv_proj_dim is not None: | |
self.add_k_proj = nn.Linear(added_kv_proj_dim, inner_dim) | |
self.add_v_proj = nn.Linear(added_kv_proj_dim, inner_dim) | |
self.to_out = nn.ModuleList([]) | |
self.to_out.append(nn.Linear(inner_dim, query_dim, bias=out_bias)) | |
self.to_out.append(nn.Dropout(dropout)) | |
# set attention processor | |
# We use the AttnProcessor2_0 by default when torch 2.x is used which uses | |
# torch.nn.functional.scaled_dot_product_attention for native Flash/memory_efficient_attention | |
# but only if it has the default `scale` argument. TODO remove scale_qk check when we move to torch 2.1 | |
if processor is None: | |
# processor = ( | |
# AttnProcessor2_0() if hasattr(F, "scaled_dot_product_attention") and self.scale_qk else AttnProcessor() | |
# ) | |
# Note: efficient attention is not used. We can use efficient attention to speed up. | |
processor = AttnProcessor() | |
self.set_processor(processor) | |
def set_processor(self, processor: "AttnProcessor"): | |
# if current processor is in `self._modules` and if passed `processor` is not, we need to | |
# pop `processor` from `self._modules` | |
if ( | |
hasattr(self, "processor") | |
and isinstance(self.processor, torch.nn.Module) | |
and not isinstance(processor, torch.nn.Module) | |
): | |
logger.info(f"You are removing possibly trained weights of {self.processor} with {processor}") | |
self._modules.pop("processor") | |
self.processor = processor | |
def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, return_attntion_probs=False, **cross_attention_kwargs): | |
# The `Attention` class can call different attention processors / attention functions | |
# here we simply pass along all tensors to the selected processor class | |
# For standard processors that are defined here, `**cross_attention_kwargs` is empty | |
return self.processor( | |
self, | |
hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
attention_mask=attention_mask, | |
return_attntion_probs=return_attntion_probs, | |
**cross_attention_kwargs, | |
) | |
def batch_to_head_dim(self, tensor): | |
head_size = self.heads | |
batch_size, seq_len, dim = tensor.shape | |
tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim) | |
tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size) | |
return tensor | |
def head_to_batch_dim(self, tensor, out_dim=3): | |
head_size = self.heads | |
batch_size, seq_len, dim = tensor.shape | |
tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size) | |
tensor = tensor.permute(0, 2, 1, 3) | |
if out_dim == 3: | |
tensor = tensor.reshape(batch_size * head_size, seq_len, dim // head_size) | |
return tensor | |
def get_attention_scores(self, query, key, attention_mask=None): | |
dtype = query.dtype | |
if self.upcast_attention: | |
query = query.float() | |
key = key.float() | |
if attention_mask is None: | |
baddbmm_input = torch.empty( | |
query.shape[0], query.shape[1], key.shape[1], dtype=query.dtype, device=query.device | |
) | |
beta = 0 | |
else: | |
baddbmm_input = attention_mask | |
beta = 1 | |
attention_scores = torch.baddbmm( | |
baddbmm_input, | |
query, | |
key.transpose(-1, -2), | |
beta=beta, | |
alpha=self.scale, | |
) | |
del baddbmm_input | |
if self.upcast_softmax: | |
attention_scores = attention_scores.float() | |
attention_probs = attention_scores.softmax(dim=-1) | |
del attention_scores | |
attention_probs = attention_probs.to(dtype) | |
return attention_probs | |
def prepare_attention_mask(self, attention_mask, target_length, batch_size=None, out_dim=3): | |
if batch_size is None: | |
deprecate( | |
"batch_size=None", | |
"0.0.15", | |
( | |
"Not passing the `batch_size` parameter to `prepare_attention_mask` can lead to incorrect" | |
" attention mask preparation and is deprecated behavior. Please make sure to pass `batch_size` to" | |
" `prepare_attention_mask` when preparing the attention_mask." | |
), | |
) | |
batch_size = 1 | |
head_size = self.heads | |
if attention_mask is None: | |
return attention_mask | |
current_length: int = attention_mask.shape[-1] | |
if current_length != target_length: | |
if attention_mask.device.type == "mps": | |
# HACK: MPS: Does not support padding by greater than dimension of input tensor. | |
# Instead, we can manually construct the padding tensor. | |
padding_shape = (attention_mask.shape[0], attention_mask.shape[1], target_length) | |
padding = torch.zeros(padding_shape, dtype=attention_mask.dtype, device=attention_mask.device) | |
attention_mask = torch.cat([attention_mask, padding], dim=2) | |
else: | |
# TODO: for pipelines such as stable-diffusion, padding cross-attn mask: | |
# we want to instead pad by (0, remaining_length), where remaining_length is: | |
# remaining_length: int = target_length - current_length | |
# TODO: re-enable tests/models/test_models_unet_2d_condition.py#test_model_xattn_padding | |
attention_mask = F.pad(attention_mask, (0, target_length), value=0.0) | |
if out_dim == 3: | |
if attention_mask.shape[0] < batch_size * head_size: | |
attention_mask = attention_mask.repeat_interleave(head_size, dim=0) | |
elif out_dim == 4: | |
attention_mask = attention_mask.unsqueeze(1) | |
attention_mask = attention_mask.repeat_interleave(head_size, dim=1) | |
return attention_mask | |
def norm_encoder_hidden_states(self, encoder_hidden_states): | |
assert self.norm_cross is not None, "self.norm_cross must be defined to call self.norm_encoder_hidden_states" | |
if isinstance(self.norm_cross, nn.LayerNorm): | |
encoder_hidden_states = self.norm_cross(encoder_hidden_states) | |
elif isinstance(self.norm_cross, nn.GroupNorm): | |
# Group norm norms along the channels dimension and expects | |
# input to be in the shape of (N, C, *). In this case, we want | |
# to norm along the hidden dimension, so we need to move | |
# (batch_size, sequence_length, hidden_size) -> | |
# (batch_size, hidden_size, sequence_length) | |
encoder_hidden_states = encoder_hidden_states.transpose(1, 2) | |
encoder_hidden_states = self.norm_cross(encoder_hidden_states) | |
encoder_hidden_states = encoder_hidden_states.transpose(1, 2) | |
else: | |
assert False | |
return encoder_hidden_states | |
class AttnProcessor: | |
r""" | |
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). | |
""" | |
def __init__(self): | |
if not hasattr(F, "scaled_dot_product_attention"): | |
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") | |
def __call_fast__( | |
self, | |
attn: Attention, | |
hidden_states, | |
encoder_hidden_states=None, | |
attention_mask=None, | |
temb=None, | |
): | |
residual = hidden_states | |
if attn.spatial_norm is not None: | |
hidden_states = attn.spatial_norm(hidden_states, temb) | |
input_ndim = hidden_states.ndim | |
if input_ndim == 4: | |
batch_size, channel, height, width = hidden_states.shape | |
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) | |
batch_size, sequence_length, _ = ( | |
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape | |
) | |
inner_dim = hidden_states.shape[-1] | |
if attention_mask is not None: | |
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) | |
# scaled_dot_product_attention expects attention_mask shape to be | |
# (batch, heads, source_length, target_length) | |
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) | |
if attn.group_norm is not None: | |
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) | |
query = attn.to_q(hidden_states) | |
if encoder_hidden_states is None: | |
encoder_hidden_states = hidden_states | |
elif attn.norm_cross: | |
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) | |
key = attn.to_k(encoder_hidden_states) | |
value = attn.to_v(encoder_hidden_states) | |
head_dim = inner_dim // attn.heads | |
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
# the output of sdp = (batch, num_heads, seq_len, head_dim) | |
# TODO: add support for attn.scale when we move to Torch 2.1 | |
hidden_states = F.scaled_dot_product_attention( | |
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False | |
) | |
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) | |
hidden_states = hidden_states.to(query.dtype) | |
# linear proj | |
hidden_states = attn.to_out[0](hidden_states) | |
# dropout | |
hidden_states = attn.to_out[1](hidden_states) | |
if input_ndim == 4: | |
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) | |
if attn.residual_connection: | |
hidden_states = hidden_states + residual | |
hidden_states = hidden_states / attn.rescale_output_factor | |
return hidden_states | |
def __call__( | |
self, | |
attn: Attention, | |
hidden_states, | |
encoder_hidden_states=None, | |
attention_mask=None, | |
temb=None, | |
return_attntion_probs=False, | |
attn_key=None, | |
attn_process_fn=None, | |
return_cond_ca_only=False, | |
return_token_ca_only=None, | |
offload_cross_attn_to_cpu=False, | |
save_attn_to_dict=None, | |
save_keys=None, | |
enable_flash_attn=True, | |
): | |
""" | |
attn_key: current key (a tuple of hierarchy index (up/mid/down, stage id, block id, sub-block id), sub block id should always be 0 in SD UNet) | |
save_attn_to_dict: pass in a dict to save to dict | |
""" | |
cross_attn = encoder_hidden_states is not None | |
if (not cross_attn) or ( | |
(attn_process_fn is None) | |
and not (save_attn_to_dict is not None and (save_keys is None or (tuple(attn_key) in save_keys))) | |
and not return_attntion_probs): | |
with torch.backends.cuda.sdp_kernel(enable_flash=enable_flash_attn, enable_math=True, enable_mem_efficient=enable_flash_attn): | |
return self.__call_fast__(attn, hidden_states, encoder_hidden_states, attention_mask, temb) | |
residual = hidden_states | |
if attn.spatial_norm is not None: | |
hidden_states = attn.spatial_norm(hidden_states, temb) | |
input_ndim = hidden_states.ndim | |
if input_ndim == 4: | |
batch_size, channel, height, width = hidden_states.shape | |
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) | |
batch_size, sequence_length, _ = ( | |
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape | |
) | |
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) | |
if attn.group_norm is not None: | |
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) | |
query = attn.to_q(hidden_states) | |
if encoder_hidden_states is None: | |
encoder_hidden_states = hidden_states | |
elif attn.norm_cross: | |
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) | |
key = attn.to_k(encoder_hidden_states) | |
value = attn.to_v(encoder_hidden_states) | |
query = attn.head_to_batch_dim(query) | |
key = attn.head_to_batch_dim(key) | |
value = attn.head_to_batch_dim(value) | |
attention_probs = attn.get_attention_scores(query, key, attention_mask) | |
# Currently only process cross-attention | |
if attn_process_fn is not None and cross_attn: | |
attention_probs_before_process = attention_probs.clone() | |
attention_probs = attn_process_fn(attention_probs, query, key, value, attn_key=attn_key, cross_attn=cross_attn, batch_size=batch_size, heads=attn.heads) | |
else: | |
attention_probs_before_process = attention_probs | |
hidden_states = torch.bmm(attention_probs, value) | |
hidden_states = attn.batch_to_head_dim(hidden_states) | |
# linear proj | |
hidden_states = attn.to_out[0](hidden_states) | |
# dropout | |
hidden_states = attn.to_out[1](hidden_states) | |
if input_ndim == 4: | |
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) | |
if attn.residual_connection: | |
hidden_states = hidden_states + residual | |
hidden_states = hidden_states / attn.rescale_output_factor | |
if return_attntion_probs or save_attn_to_dict is not None: | |
# Recover batch dimension: (batch_size, heads, flattened_2d, text_tokens) | |
attention_probs_unflattened = attention_probs_before_process.unflatten(dim=0, sizes=(batch_size, attn.heads)) | |
if return_token_ca_only is not None: | |
# (batch size, n heads, 2d dimension, num text tokens) | |
if isinstance(return_token_ca_only, int): | |
# return_token_ca_only: an integer | |
attention_probs_unflattened = attention_probs_unflattened[:, :, :, return_token_ca_only:return_token_ca_only+1] | |
else: | |
# return_token_ca_only: A 1d index tensor | |
attention_probs_unflattened = attention_probs_unflattened[:, :, :, return_token_ca_only] | |
if return_cond_ca_only: | |
assert batch_size % 2 == 0, f"Samples are not in pairs: {batch_size} samples" | |
attention_probs_unflattened = attention_probs_unflattened[batch_size // 2:] | |
if offload_cross_attn_to_cpu: | |
attention_probs_unflattened = attention_probs_unflattened.cpu() | |
if save_attn_to_dict is not None and (save_keys is None or (tuple(attn_key) in save_keys)): | |
save_attn_to_dict[tuple(attn_key)] = attention_probs_unflattened | |
if return_attntion_probs: | |
return hidden_states, attention_probs_unflattened | |
return hidden_states | |
# For typing | |
AttentionProcessor = AttnProcessor | |
class SpatialNorm(nn.Module): | |
""" | |
Spatially conditioned normalization as defined in https://arxiv.org/abs/2209.09002 | |
""" | |
def __init__( | |
self, | |
f_channels, | |
zq_channels, | |
): | |
super().__init__() | |
self.norm_layer = nn.GroupNorm(num_channels=f_channels, num_groups=32, eps=1e-6, affine=True) | |
self.conv_y = nn.Conv2d(zq_channels, f_channels, kernel_size=1, stride=1, padding=0) | |
self.conv_b = nn.Conv2d(zq_channels, f_channels, kernel_size=1, stride=1, padding=0) | |
def forward(self, f, zq): | |
f_size = f.shape[-2:] | |
zq = F.interpolate(zq, size=f_size, mode="nearest") | |
norm_f = self.norm_layer(f) | |
new_f = norm_f * self.conv_y(zq) + self.conv_b(zq) | |
return new_f | |