Spaces:
Runtime error
Runtime error
| import streamlit as st | |
| import torch | |
| from diffusers import StableDiffusionPipeline | |
| model_id1 = "runwayml/stable-diffusion-v1-5" | |
| pipe = StableDiffusionPipeline.from_pretrained(model_id1, torch_dtype=torch.float16, use_safetensors=True) | |
| pipe = pipe.to("cuda") | |
| def generate_image(prompt, negative_prompt, num_inference_steps=50, width=640): | |
| params = { | |
| 'prompt': prompt, | |
| 'num_inference_steps': num_inference_steps, | |
| 'num_images_per_prompt': 2, | |
| 'height': int(1.2 * width), | |
| 'width': width, | |
| 'negative_prompt': negative_prompt | |
| } | |
| img = pipe(**params).images | |
| return img[0], img[1] | |
| def main(): | |
| st.title("Diffuser Image Generator") | |
| prompt = st.text_input("Enter the prompt:") | |
| negative_prompt = st.text_input("Enter the negative prompt:") | |
| num_inference_steps = st.slider("Number of inference steps", 1, 100, 50) | |
| width = st.slider("Width", 512, 640, 640) | |
| if st.button("Generate Image"): | |
| image1, image2 = generate_image(prompt, negative_prompt, num_inference_steps, width) | |
| st.image(image1, caption="Generated Image 1", use_column_width=True) | |
| st.image(image2, caption="Generated Image 2", use_column_width=True) | |
| if __name__ == "__main__": | |
| main() |