Spaces:
Runtime error
Runtime error
Commit
•
efeb88d
0
Parent(s):
Duplicate from itsyoboieltr/anpr-yolov7
Browse filesCo-authored-by: Norbert Elter <itsyoboieltr@users.noreply.huggingface.co>
- .gitignore +36 -0
- README.md +11 -0
- app.py +368 -0
- requirements.txt +9 -0
.gitignore
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Logs
|
2 |
+
logs
|
3 |
+
*.log
|
4 |
+
*.log.mbtree
|
5 |
+
npm-debug.log*
|
6 |
+
yarn-debug.log*
|
7 |
+
yarn-error.log*
|
8 |
+
pnpm-debug.log*
|
9 |
+
lerna-debug.log*
|
10 |
+
|
11 |
+
node_modules
|
12 |
+
dist
|
13 |
+
dist-ssr
|
14 |
+
*.local
|
15 |
+
pnpm-lock.yaml
|
16 |
+
|
17 |
+
# Editor directories and files
|
18 |
+
.vscode/*
|
19 |
+
!.vscode/extensions.json
|
20 |
+
.idea
|
21 |
+
.DS_Store
|
22 |
+
*.suo
|
23 |
+
*.ntvs*
|
24 |
+
*.njsproj
|
25 |
+
*.sln
|
26 |
+
*.sw?
|
27 |
+
|
28 |
+
__pycache__
|
29 |
+
.ipynb_checkpoints
|
30 |
+
gradio_cached_examples
|
31 |
+
*.pt
|
32 |
+
deep_sort
|
33 |
+
yolov7
|
34 |
+
*.mp4
|
35 |
+
*.tar.gz
|
36 |
+
examples
|
README.md
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Automatic Number-Plate Recognition (YOLOV7)
|
3 |
+
emoji: 🚘
|
4 |
+
colorFrom: red
|
5 |
+
colorTo: gray
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 3.1.4
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
duplicated_from: itsyoboieltr/anpr-yolov7
|
11 |
+
---
|
app.py
ADDED
@@ -0,0 +1,368 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import fileinput
|
2 |
+
import itertools
|
3 |
+
import os
|
4 |
+
import re
|
5 |
+
from copy import deepcopy
|
6 |
+
from operator import itemgetter
|
7 |
+
from pathlib import Path
|
8 |
+
from typing import Union
|
9 |
+
|
10 |
+
import cv2 # type: ignore
|
11 |
+
import gradio as gr # type: ignore
|
12 |
+
import numpy as np
|
13 |
+
import torch
|
14 |
+
from deep_sort_realtime.deepsort_tracker import DeepSort # type: ignore
|
15 |
+
from paddleocr import PaddleOCR # type: ignore
|
16 |
+
|
17 |
+
if not os.path.isfile("weights.pt"):
|
18 |
+
weights_url = "https://archive.org/download/anpr_weights/weights.pt"
|
19 |
+
os.system(f"wget {weights_url}")
|
20 |
+
|
21 |
+
if not os.path.isdir("examples"):
|
22 |
+
examples_url = "https://archive.org/download/anpr_examples_202208/examples.tar.gz"
|
23 |
+
os.system(f"wget {examples_url}")
|
24 |
+
os.system("tar -xvf examples.tar.gz")
|
25 |
+
os.system("rm -rf examples.tar.gz")
|
26 |
+
|
27 |
+
|
28 |
+
def prepend_text(filename: Union[str, Path], text: str):
|
29 |
+
with fileinput.input(filename, inplace=True) as file:
|
30 |
+
for line in file:
|
31 |
+
if file.isfirstline():
|
32 |
+
print(text)
|
33 |
+
print(line, end="")
|
34 |
+
|
35 |
+
|
36 |
+
if not os.path.isdir("yolov7"):
|
37 |
+
yolov7_repo_url = "https://github.com/WongKinYiu/yolov7"
|
38 |
+
os.system(f"git clone {yolov7_repo_url}")
|
39 |
+
# Fix import errors
|
40 |
+
for file in [
|
41 |
+
"yolov7/models/common.py",
|
42 |
+
"yolov7/models/experimental.py",
|
43 |
+
"yolov7/models/yolo.py",
|
44 |
+
"yolov7/utils/datasets.py",
|
45 |
+
]:
|
46 |
+
prepend_text(file, "import sys\nsys.path.insert(0, './yolov7')")
|
47 |
+
|
48 |
+
from yolov7.models.experimental import attempt_load # type: ignore
|
49 |
+
from yolov7.utils.datasets import letterbox # type: ignore
|
50 |
+
from yolov7.utils.general import check_img_size # type: ignore
|
51 |
+
from yolov7.utils.general import non_max_suppression # type: ignore
|
52 |
+
from yolov7.utils.general import scale_coords # type: ignore
|
53 |
+
from yolov7.utils.plots import plot_one_box # type: ignore
|
54 |
+
from yolov7.utils.torch_utils import TracedModel, select_device # type: ignore
|
55 |
+
|
56 |
+
weights = "weights.pt"
|
57 |
+
device_id = "cpu"
|
58 |
+
image_size = 640
|
59 |
+
trace = True
|
60 |
+
|
61 |
+
# Initialize
|
62 |
+
device = select_device(device_id)
|
63 |
+
half = device.type != "cpu" # half precision only supported on CUDA
|
64 |
+
|
65 |
+
# Load model
|
66 |
+
model = attempt_load(weights, map_location=device) # load FP32 model
|
67 |
+
stride = int(model.stride.max()) # model stride
|
68 |
+
imgsz = check_img_size(image_size, s=stride) # check img_size
|
69 |
+
|
70 |
+
if trace:
|
71 |
+
model = TracedModel(model, device, image_size)
|
72 |
+
|
73 |
+
if half:
|
74 |
+
model.half() # to FP16
|
75 |
+
|
76 |
+
if device.type != "cpu":
|
77 |
+
model(
|
78 |
+
torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))
|
79 |
+
) # run once
|
80 |
+
|
81 |
+
model.eval()
|
82 |
+
|
83 |
+
# Load OCR
|
84 |
+
|
85 |
+
paddle = PaddleOCR(lang="en")
|
86 |
+
|
87 |
+
|
88 |
+
def detect_plate(source_image):
|
89 |
+
# Padded resize
|
90 |
+
img_size = 640
|
91 |
+
stride = 32
|
92 |
+
img = letterbox(source_image, img_size, stride=stride)[0]
|
93 |
+
|
94 |
+
# Convert
|
95 |
+
img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
|
96 |
+
img = np.ascontiguousarray(img)
|
97 |
+
img = torch.from_numpy(img).to(device)
|
98 |
+
img = img.half() if half else img.float() # uint8 to fp16/32
|
99 |
+
img /= 255.0 # 0 - 255 to 0.0 - 1.0
|
100 |
+
if img.ndimension() == 3:
|
101 |
+
img = img.unsqueeze(0)
|
102 |
+
|
103 |
+
with torch.no_grad():
|
104 |
+
# Inference
|
105 |
+
pred = model(img, augment=True)[0]
|
106 |
+
|
107 |
+
# Apply NMS
|
108 |
+
pred = non_max_suppression(pred, 0.25, 0.45, classes=0, agnostic=True)
|
109 |
+
|
110 |
+
plate_detections = []
|
111 |
+
det_confidences = []
|
112 |
+
|
113 |
+
# Process detections
|
114 |
+
for i, det in enumerate(pred): # detections per image
|
115 |
+
if len(det):
|
116 |
+
# Rescale boxes from img_size to source image size
|
117 |
+
det[:, :4] = scale_coords(
|
118 |
+
img.shape[2:], det[:, :4], source_image.shape
|
119 |
+
).round()
|
120 |
+
|
121 |
+
# Return results
|
122 |
+
for *xyxy, conf, cls in reversed(det):
|
123 |
+
coords = [
|
124 |
+
int(position)
|
125 |
+
for position in (torch.tensor(xyxy).view(1, 4)).tolist()[0]
|
126 |
+
]
|
127 |
+
plate_detections.append(coords)
|
128 |
+
det_confidences.append(conf.item())
|
129 |
+
|
130 |
+
return plate_detections, det_confidences
|
131 |
+
|
132 |
+
|
133 |
+
def unsharp_mask(image, kernel_size=(5, 5), sigma=1.0, amount=2.0, threshold=0):
|
134 |
+
blurred = cv2.GaussianBlur(image, kernel_size, sigma)
|
135 |
+
sharpened = float(amount + 1) * image - float(amount) * blurred
|
136 |
+
sharpened = np.maximum(sharpened, np.zeros(sharpened.shape))
|
137 |
+
sharpened = np.minimum(sharpened, 255 * np.ones(sharpened.shape))
|
138 |
+
sharpened = sharpened.round().astype(np.uint8)
|
139 |
+
if threshold > 0:
|
140 |
+
low_contrast_mask = np.absolute(image - blurred) < threshold
|
141 |
+
np.copyto(sharpened, image, where=low_contrast_mask)
|
142 |
+
return sharpened
|
143 |
+
|
144 |
+
|
145 |
+
def crop(image, coord):
|
146 |
+
cropped_image = image[int(coord[1]) : int(coord[3]), int(coord[0]) : int(coord[2])]
|
147 |
+
return cropped_image
|
148 |
+
|
149 |
+
|
150 |
+
def ocr_plate(plate_region):
|
151 |
+
# Image pre-processing for more accurate OCR
|
152 |
+
rescaled = cv2.resize(
|
153 |
+
plate_region, None, fx=1.2, fy=1.2, interpolation=cv2.INTER_CUBIC
|
154 |
+
)
|
155 |
+
grayscale = cv2.cvtColor(rescaled, cv2.COLOR_BGR2GRAY)
|
156 |
+
kernel = np.ones((1, 1), np.uint8)
|
157 |
+
dilated = cv2.dilate(grayscale, kernel, iterations=1)
|
158 |
+
eroded = cv2.erode(dilated, kernel, iterations=1)
|
159 |
+
sharpened = unsharp_mask(eroded)
|
160 |
+
|
161 |
+
# OCR the preprocessed image
|
162 |
+
results = paddle.ocr(sharpened, det=False, cls=False)
|
163 |
+
flattened = list(itertools.chain.from_iterable(results))
|
164 |
+
plate_text, ocr_confidence = max(flattened, key=itemgetter(1), default=("", 0))
|
165 |
+
|
166 |
+
# Filter out anything but uppercase letters, digits, hypens and whitespace.
|
167 |
+
plate_text = re.sub(r"[^-A-Z0-9 ]", r"", plate_text).strip()
|
168 |
+
|
169 |
+
if ocr_confidence == "nan":
|
170 |
+
ocr_confidence = 0
|
171 |
+
|
172 |
+
return plate_text, ocr_confidence
|
173 |
+
|
174 |
+
|
175 |
+
def get_plates_from_image(input):
|
176 |
+
if input is None:
|
177 |
+
return None
|
178 |
+
plate_detections, det_confidences = detect_plate(input)
|
179 |
+
plate_texts = []
|
180 |
+
ocr_confidences = []
|
181 |
+
detected_image = deepcopy(input)
|
182 |
+
for coords in plate_detections:
|
183 |
+
plate_region = crop(input, coords)
|
184 |
+
plate_text, ocr_confidence = ocr_plate(plate_region)
|
185 |
+
if ocr_confidence == 0: # If OCR confidence is 0, skip this detection
|
186 |
+
continue
|
187 |
+
plate_texts.append(plate_text)
|
188 |
+
ocr_confidences.append(ocr_confidence)
|
189 |
+
plot_one_box(
|
190 |
+
coords,
|
191 |
+
detected_image,
|
192 |
+
label=plate_text,
|
193 |
+
color=[0, 150, 255],
|
194 |
+
line_thickness=2,
|
195 |
+
)
|
196 |
+
return detected_image
|
197 |
+
|
198 |
+
|
199 |
+
def pascal_voc_to_coco(x1y1x2y2):
|
200 |
+
x1, y1, x2, y2 = x1y1x2y2
|
201 |
+
return [x1, y1, x2 - x1, y2 - y1]
|
202 |
+
|
203 |
+
|
204 |
+
def get_best_ocr(preds, rec_conf, ocr_res, track_id):
|
205 |
+
for info in preds:
|
206 |
+
# Check if it is current track id
|
207 |
+
if info["track_id"] == track_id:
|
208 |
+
# Check if the ocr confidenence is maximum or not
|
209 |
+
if info["ocr_conf"] < rec_conf:
|
210 |
+
info["ocr_conf"] = rec_conf
|
211 |
+
info["ocr_txt"] = ocr_res
|
212 |
+
else:
|
213 |
+
rec_conf = info["ocr_conf"]
|
214 |
+
ocr_res = info["ocr_txt"]
|
215 |
+
break
|
216 |
+
return preds, rec_conf, ocr_res
|
217 |
+
|
218 |
+
|
219 |
+
def get_plates_from_video(source):
|
220 |
+
if source is None:
|
221 |
+
return None
|
222 |
+
|
223 |
+
# Create a VideoCapture object
|
224 |
+
video = cv2.VideoCapture(source)
|
225 |
+
|
226 |
+
# Default resolutions of the frame are obtained. The default resolutions are system dependent.
|
227 |
+
# We convert the resolutions from float to integer.
|
228 |
+
width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))
|
229 |
+
height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
230 |
+
fps = video.get(cv2.CAP_PROP_FPS)
|
231 |
+
|
232 |
+
# Define the codec and create VideoWriter object.
|
233 |
+
temp = f"{Path(source).stem}_temp{Path(source).suffix}"
|
234 |
+
export = cv2.VideoWriter(
|
235 |
+
temp, cv2.VideoWriter_fourcc(*"mp4v"), fps, (width, height)
|
236 |
+
)
|
237 |
+
|
238 |
+
# Intializing tracker
|
239 |
+
tracker = DeepSort(embedder_gpu=False)
|
240 |
+
|
241 |
+
# Initializing some helper variables.
|
242 |
+
preds = []
|
243 |
+
total_obj = 0
|
244 |
+
|
245 |
+
while True:
|
246 |
+
ret, frame = video.read()
|
247 |
+
if ret == True:
|
248 |
+
# Run the ANPR algorithm
|
249 |
+
bboxes, scores = detect_plate(frame)
|
250 |
+
# Convert Pascal VOC detections to COCO
|
251 |
+
bboxes = list(map(lambda bbox: pascal_voc_to_coco(bbox), bboxes))
|
252 |
+
|
253 |
+
if len(bboxes) > 0:
|
254 |
+
# Storing all the required info in a list.
|
255 |
+
detections = [
|
256 |
+
(bbox, score, "number_plate") for bbox, score in zip(bboxes, scores)
|
257 |
+
]
|
258 |
+
|
259 |
+
# Applying tracker.
|
260 |
+
# The tracker code flow: kalman filter -> target association(using hungarian algorithm) and appearance descriptor.
|
261 |
+
tracks = tracker.update_tracks(detections, frame=frame)
|
262 |
+
|
263 |
+
# Checking if tracks exist.
|
264 |
+
for track in tracks:
|
265 |
+
if not track.is_confirmed() or track.time_since_update > 1:
|
266 |
+
continue
|
267 |
+
|
268 |
+
# Changing track bbox to top left, bottom right coordinates
|
269 |
+
bbox = [int(position) for position in list(track.to_tlbr())]
|
270 |
+
|
271 |
+
for i in range(len(bbox)):
|
272 |
+
if bbox[i] < 0:
|
273 |
+
bbox[i] = 0
|
274 |
+
|
275 |
+
# Cropping the license plate and applying the OCR.
|
276 |
+
plate_region = crop(frame, bbox)
|
277 |
+
plate_text, ocr_confidence = ocr_plate(plate_region)
|
278 |
+
|
279 |
+
# Storing the ocr output for corresponding track id.
|
280 |
+
output_frame = {
|
281 |
+
"track_id": track.track_id,
|
282 |
+
"ocr_txt": plate_text,
|
283 |
+
"ocr_conf": ocr_confidence,
|
284 |
+
}
|
285 |
+
|
286 |
+
# Appending track_id to list only if it does not exist in the list
|
287 |
+
# else looking for the current track in the list and updating the highest confidence of it.
|
288 |
+
if track.track_id not in list(
|
289 |
+
set(pred["track_id"] for pred in preds)
|
290 |
+
):
|
291 |
+
total_obj += 1
|
292 |
+
preds.append(output_frame)
|
293 |
+
else:
|
294 |
+
preds, ocr_confidence, plate_text = get_best_ocr(
|
295 |
+
preds, ocr_confidence, plate_text, track.track_id
|
296 |
+
)
|
297 |
+
|
298 |
+
# Plotting the prediction.
|
299 |
+
plot_one_box(
|
300 |
+
bbox,
|
301 |
+
frame,
|
302 |
+
label=f"{str(track.track_id)}. {plate_text}",
|
303 |
+
color=[255, 150, 0],
|
304 |
+
line_thickness=3,
|
305 |
+
)
|
306 |
+
|
307 |
+
# Write the frame into the output file
|
308 |
+
export.write(frame)
|
309 |
+
else:
|
310 |
+
break
|
311 |
+
|
312 |
+
# When everything done, release the video capture and video write objects
|
313 |
+
|
314 |
+
video.release()
|
315 |
+
export.release()
|
316 |
+
|
317 |
+
# Compressing the output video for smaller size and web compatibility.
|
318 |
+
output = f"{Path(source).stem}_detected{Path(source).suffix}"
|
319 |
+
os.system(
|
320 |
+
f"ffmpeg -y -i {temp} -c:v libx264 -b:v 5000k -minrate 1000k -maxrate 8000k -pass 1 -c:a aac -f mp4 /dev/null && ffmpeg -i {temp} -c:v libx264 -b:v 5000k -minrate 1000k -maxrate 8000k -pass 2 -c:a aac -movflags faststart {output}"
|
321 |
+
)
|
322 |
+
os.system(f"rm -rf {temp} ffmpeg2pass-0.log ffmpeg2pass-0.log.mbtree")
|
323 |
+
|
324 |
+
return output
|
325 |
+
|
326 |
+
|
327 |
+
with gr.Blocks() as demo:
|
328 |
+
gr.Markdown('### <h3 align="center">Automatic Number Plate Recognition</h3>')
|
329 |
+
gr.Markdown(
|
330 |
+
"This AI was trained to detect and recognize number plates on vehicles."
|
331 |
+
)
|
332 |
+
with gr.Tabs():
|
333 |
+
with gr.TabItem("Image"):
|
334 |
+
with gr.Row():
|
335 |
+
image_input = gr.Image()
|
336 |
+
image_output = gr.Image()
|
337 |
+
image_input.change(
|
338 |
+
get_plates_from_image, inputs=image_input, outputs=image_output
|
339 |
+
)
|
340 |
+
gr.Examples(
|
341 |
+
[
|
342 |
+
["examples/test_image_1.jpg"],
|
343 |
+
["examples/test_image_2.jpg"],
|
344 |
+
["examples/test_image_3.png"],
|
345 |
+
["examples/test_image_4.jpeg"],
|
346 |
+
],
|
347 |
+
[image_input],
|
348 |
+
image_output,
|
349 |
+
get_plates_from_image,
|
350 |
+
cache_examples=True,
|
351 |
+
)
|
352 |
+
with gr.TabItem("Video"):
|
353 |
+
with gr.Row():
|
354 |
+
video_input = gr.Video(format="mp4")
|
355 |
+
video_output = gr.Video(format="mp4")
|
356 |
+
video_input.change(
|
357 |
+
get_plates_from_video, inputs=video_input, outputs=video_output
|
358 |
+
)
|
359 |
+
gr.Examples(
|
360 |
+
[["examples/test_video_1.mp4"]],
|
361 |
+
[video_input],
|
362 |
+
video_output,
|
363 |
+
get_plates_from_video,
|
364 |
+
cache_examples=True,
|
365 |
+
)
|
366 |
+
gr.Markdown("[@itsyoboieltr](https://github.com/itsyoboieltr)")
|
367 |
+
|
368 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
numpy
|
2 |
+
opencv-python
|
3 |
+
paddlepaddle
|
4 |
+
paddleocr
|
5 |
+
deep-sort-realtime
|
6 |
+
torch
|
7 |
+
torchvision
|
8 |
+
tensorflow
|
9 |
+
seaborn
|