anprsystem / app.py
lohitkavuru14's picture
Update app.py
cb5c22d
import fileinput
import itertools
import os
import re
from copy import deepcopy
from operator import itemgetter
from pathlib import Path
from typing import Union
!pip install opencv-python
!pip install --quiet gradio==2.9.0b0
import cv2 # type: ignore
import gradio as gr # type: ignore
gr.Interface(lambda x:x, "textbox", "textbox").launch()
import numpy as np
import torch
from deep_sort_realtime.deepsort_tracker import DeepSort # type: ignore
from paddleocr import PaddleOCR # type: ignore
if not os.path.isfile("weights.pt"):
weights_url = "https://archive.org/download/anpr_weights/weights.pt"
os.system(f"wget {weights_url}")
if not os.path.isdir("examples"):
examples_url = "https://archive.org/download/anpr_examples_202208/examples.tar.gz"
os.system(f"wget {examples_url}")
os.system("tar -xvf examples.tar.gz")
os.system("rm -rf examples.tar.gz")
def prepend_text(filename: Union[str, Path], text: str):
with fileinput.input(filename, inplace=True) as file:
for line in file:
if file.isfirstline():
print(text)
print(line, end="")
if not os.path.isdir("yolov7"):
yolov7_repo_url = "https://github.com/WongKinYiu/yolov7"
os.system(f"git clone {yolov7_repo_url}")
# Fix import errors
for file in [
"yolov7/models/common.py",
"yolov7/models/experimental.py",
"yolov7/models/yolo.py",
"yolov7/utils/datasets.py",
]:
prepend_text(file, "import sys\nsys.path.insert(0, './yolov7')")
from yolov7.models.experimental import attempt_load # type: ignore
from yolov7.utils.datasets import letterbox # type: ignore
from yolov7.utils.general import check_img_size # type: ignore
from yolov7.utils.general import non_max_suppression # type: ignore
from yolov7.utils.general import scale_coords # type: ignore
from yolov7.utils.plots import plot_one_box # type: ignore
from yolov7.utils.torch_utils import TracedModel, select_device # type: ignore
weights = "weights.pt"
device_id = "cpu"
image_size = 640
trace = True
# Initialize
device = select_device(device_id)
half = device.type != "cpu" # half precision only supported on CUDA
# Load model
model = attempt_load(weights, map_location=device) # load FP32 model
stride = int(model.stride.max()) # model stride
imgsz = check_img_size(image_size, s=stride) # check img_size
if trace:
model = TracedModel(model, device, image_size)
if half:
model.half() # to FP16
if device.type != "cpu":
model(
torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))
) # run once
model.eval()
# Load OCR
paddle = PaddleOCR(lang="en")
def detect_plate(source_image):
# Padded resize
img_size = 640
stride = 32
img = letterbox(source_image, img_size, stride=stride)[0]
# Convert
img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
img = np.ascontiguousarray(img)
img = torch.from_numpy(img).to(device)
img = img.half() if half else img.float() # uint8 to fp16/32
img /= 255.0 # 0 - 255 to 0.0 - 1.0
if img.ndimension() == 3:
img = img.unsqueeze(0)
with torch.no_grad():
# Inference
pred = model(img, augment=True)[0]
# Apply NMS
pred = non_max_suppression(pred, 0.25, 0.45, classes=0, agnostic=True)
plate_detections = []
det_confidences = []
# Process detections
for i, det in enumerate(pred): # detections per image
if len(det):
# Rescale boxes from img_size to source image size
det[:, :4] = scale_coords(
img.shape[2:], det[:, :4], source_image.shape
).round()
# Return results
for *xyxy, conf, cls in reversed(det):
coords = [
int(position)
for position in (torch.tensor(xyxy).view(1, 4)).tolist()[0]
]
plate_detections.append(coords)
det_confidences.append(conf.item())
return plate_detections, det_confidences
def unsharp_mask(image, kernel_size=(5, 5), sigma=1.0, amount=2.0, threshold=0):
blurred = cv2.GaussianBlur(image, kernel_size, sigma)
sharpened = float(amount + 1) * image - float(amount) * blurred
sharpened = np.maximum(sharpened, np.zeros(sharpened.shape))
sharpened = np.minimum(sharpened, 255 * np.ones(sharpened.shape))
sharpened = sharpened.round().astype(np.uint8)
if threshold > 0:
low_contrast_mask = np.absolute(image - blurred) < threshold
np.copyto(sharpened, image, where=low_contrast_mask)
return sharpened
def crop(image, coord):
cropped_image = image[int(coord[1]) : int(coord[3]), int(coord[0]) : int(coord[2])]
return cropped_image
def ocr_plate(plate_region):
# Image pre-processing for more accurate OCR
rescaled = cv2.resize(
plate_region, None, fx=1.2, fy=1.2, interpolation=cv2.INTER_CUBIC
)
grayscale = cv2.cvtColor(rescaled, cv2.COLOR_BGR2GRAY)
kernel = np.ones((1, 1), np.uint8)
dilated = cv2.dilate(grayscale, kernel, iterations=1)
eroded = cv2.erode(dilated, kernel, iterations=1)
sharpened = unsharp_mask(eroded)
# OCR the preprocessed image
results = paddle.ocr(sharpened, det=False, cls=False)
flattened = list(itertools.chain.from_iterable(results))
plate_text, ocr_confidence = max(flattened, key=itemgetter(1), default=("", 0))
# Filter out anything but uppercase letters, digits, hypens and whitespace.
plate_text = re.sub(r"[^-A-Z0-9 ]", r"", plate_text).strip()
if ocr_confidence == "nan":
ocr_confidence = 0
return plate_text, ocr_confidence
def get_plates_from_image(input):
if input is None:
return None
plate_detections, det_confidences = detect_plate(input)
plate_texts = []
ocr_confidences = []
detected_image = deepcopy(input)
for coords in plate_detections:
plate_region = crop(input, coords)
plate_text, ocr_confidence = ocr_plate(plate_region)
if ocr_confidence == 0: # If OCR confidence is 0, skip this detection
continue
plate_texts.append(plate_text)
ocr_confidences.append(ocr_confidence)
plot_one_box(
coords,
detected_image,
label=plate_text,
color=[0, 150, 255],
line_thickness=2,
)
return detected_image
def pascal_voc_to_coco(x1y1x2y2):
x1, y1, x2, y2 = x1y1x2y2
return [x1, y1, x2 - x1, y2 - y1]
def get_best_ocr(preds, rec_conf, ocr_res, track_id):
for info in preds:
# Check if it is current track id
if info["track_id"] == track_id:
# Check if the ocr confidenence is maximum or not
if info["ocr_conf"] < rec_conf:
info["ocr_conf"] = rec_conf
info["ocr_txt"] = ocr_res
else:
rec_conf = info["ocr_conf"]
ocr_res = info["ocr_txt"]
break
return preds, rec_conf, ocr_res
def get_plates_from_video(source):
if source is None:
return None
# Create a VideoCapture object
video = cv2.VideoCapture(source)
# Default resolutions of the frame are obtained. The default resolutions are system dependent.
# We convert the resolutions from float to integer.
width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = video.get(cv2.CAP_PROP_FPS)
# Define the codec and create VideoWriter object.
temp = f"{Path(source).stem}_temp{Path(source).suffix}"
export = cv2.VideoWriter(
temp, cv2.VideoWriter_fourcc(*"mp4v"), fps, (width, height)
)
# Intializing tracker
tracker = DeepSort(embedder_gpu=False)
# Initializing some helper variables.
preds = []
total_obj = 0
while True:
ret, frame = video.read()
if ret == True:
# Run the ANPR algorithm
bboxes, scores = detect_plate(frame)
# Convert Pascal VOC detections to COCO
bboxes = list(map(lambda bbox: pascal_voc_to_coco(bbox), bboxes))
if len(bboxes) > 0:
# Storing all the required info in a list.
detections = [
(bbox, score, "number_plate") for bbox, score in zip(bboxes, scores)
]
# Applying tracker.
# The tracker code flow: kalman filter -> target association(using hungarian algorithm) and appearance descriptor.
tracks = tracker.update_tracks(detections, frame=frame)
# Checking if tracks exist.
for track in tracks:
if not track.is_confirmed() or track.time_since_update > 1:
continue
# Changing track bbox to top left, bottom right coordinates
bbox = [int(position) for position in list(track.to_tlbr())]
for i in range(len(bbox)):
if bbox[i] < 0:
bbox[i] = 0
# Cropping the license plate and applying the OCR.
plate_region = crop(frame, bbox)
plate_text, ocr_confidence = ocr_plate(plate_region)
# Storing the ocr output for corresponding track id.
output_frame = {
"track_id": track.track_id,
"ocr_txt": plate_text,
"ocr_conf": ocr_confidence,
}
# Appending track_id to list only if it does not exist in the list
# else looking for the current track in the list and updating the highest confidence of it.
if track.track_id not in list(
set(pred["track_id"] for pred in preds)
):
total_obj += 1
preds.append(output_frame)
else:
preds, ocr_confidence, plate_text = get_best_ocr(
preds, ocr_confidence, plate_text, track.track_id
)
# Plotting the prediction.
plot_one_box(
bbox,
frame,
label=f"{str(track.track_id)}. {plate_text}",
color=[255, 150, 0],
line_thickness=3,
)
# Write the frame into the output file
export.write(frame)
else:
break
# When everything done, release the video capture and video write objects
video.release()
export.release()
# Compressing the output video for smaller size and web compatibility.
output = f"{Path(source).stem}_detected{Path(source).suffix}"
os.system(
f"ffmpeg -y -i {temp} -c:v libx264 -b:v 5000k -minrate 1000k -maxrate 8000k -pass 1 -c:a aac -f mp4 /dev/null && ffmpeg -i {temp} -c:v libx264 -b:v 5000k -minrate 1000k -maxrate 8000k -pass 2 -c:a aac -movflags faststart {output}"
)
os.system(f"rm -rf {temp} ffmpeg2pass-0.log ffmpeg2pass-0.log.mbtree")
return output
with gr.Blocks() as demo:
gr.Markdown('### <h3 align="center">Automatic Number Plate Recognition</h3>')
gr.Markdown(
"This AI was trained to detect and recognize number plates on vehicles."
)
with gr.Tabs():
with gr.TabItem("Image"):
with gr.Row():
image_input = gr.Image()
image_output = gr.Image()
image_input.change(
get_plates_from_image, inputs=image_input, outputs=image_output
)
gr.Examples(
[
["examples/test_image_1.jpg"],
["examples/test_image_2.jpg"],
["examples/test_image_3.png"],
["examples/test_image_4.jpeg"],
],
[image_input],
image_output,
get_plates_from_image,
cache_examples=True,
)
with gr.TabItem("Video"):
with gr.Row():
video_input = gr.Video(format="mp4")
video_output = gr.Video(format="mp4")
video_input.change(
get_plates_from_video, inputs=video_input, outputs=video_output
)
gr.Examples(
[["examples/test_video_1.mp4"]],
[video_input],
video_output,
get_plates_from_video,
cache_examples=True,
)
gr.Markdown("[@itsyoboieltr](https://github.com/itsyoboieltr)")
demo.launch()