benjamin-chat / backend /models.py
Gregor Betz
LazyHfEndpoint validator
5c840c4 unverified
from typing import Any, Dict
from enum import Enum
#from langchain_community.chat_models.huggingface import ChatHuggingFace
#from langchain_community.llms.huggingface_endpoint import HuggingFaceEndpoint
from langchain_core import pydantic_v1
from langchain_core.language_models.chat_models import BaseChatModel
from langchain_core.utils import get_from_dict_or_env
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint
from langchain_openai import ChatOpenAI
class LLMBackends(Enum):
"""LLMBackends
Enum for LLMBackends.
"""
VLLM = "VLLM"
HFChat = "HFChat"
Fireworks = "Fireworks"
class LazyChatHuggingFace(ChatHuggingFace):
"""LazyChatHuggingFace"""
def __init__(self, **kwargs: Any):
BaseChatModel.__init__(self, **kwargs)
from transformers import AutoTokenizer
if not self.model_id:
self._resolve_model_id()
self.tokenizer = (
AutoTokenizer.from_pretrained(self.model_id)
if self.tokenizer is None
else self.tokenizer
)
class LazyHuggingFaceEndpoint(HuggingFaceEndpoint):
"""LazyHuggingFaceEndpoint"""
# We're using a lazy endpoint to avoid logging in with hf_token,
# which might in fact be a hf_oauth token that does only permit inference,
# not logging in.
@pydantic_v1.root_validator(pre=True)
def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]:
return super().build_extra(values)
@pydantic_v1.root_validator()
def validate_environment(cls, values: Dict) -> Dict: # noqa: UP006, N805
"""Validate that package is installed and that the API token is valid."""
try:
from huggingface_hub import AsyncInferenceClient, InferenceClient
except ImportError:
msg = (
"Could not import huggingface_hub python package. "
"Please install it with `pip install huggingface_hub`."
)
raise ImportError(msg) # noqa: B904
huggingfacehub_api_token = get_from_dict_or_env(
values, "huggingfacehub_api_token", "HF_TOKEN"
)
values["client"] = InferenceClient(
model=values["model"],
timeout=values["timeout"],
token=huggingfacehub_api_token,
**values["server_kwargs"],
)
values["async_client"] = AsyncInferenceClient(
model=values["model"],
timeout=values["timeout"],
token=huggingfacehub_api_token,
**values["server_kwargs"],
)
return values
def get_chat_model_wrapper(
model_id: str,
inference_server_url: str,
token: str,
backend: str = "HFChat",
**model_init_kwargs
):
backend = LLMBackends(backend)
if backend == LLMBackends.HFChat:
# llm = LazyHuggingFaceEndpoint(
# endpoint_url=inference_server_url,
# task="text-generation",
# huggingfacehub_api_token=token,
# **model_init_kwargs,
# )
llm = LazyHuggingFaceEndpoint(
repo_id=model_id,
task="text-generation",
huggingfacehub_api_token=token,
**model_init_kwargs,
)
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(model_id, token=token)
chat_model = LazyChatHuggingFace(llm=llm, model_id=model_id, tokenizer=tokenizer)
elif backend in [LLMBackends.VLLM, LLMBackends.Fireworks]:
chat_model = ChatOpenAI(
model=model_id,
openai_api_base=inference_server_url, # type: ignore
openai_api_key=token, # type: ignore
**model_init_kwargs,
)
else:
raise ValueError(f"Backend {backend} not supported")
return chat_model