|
|
|
import torch |
|
import torch.nn.functional as F |
|
import torchvision.transforms as transforms |
|
import torch.nn as nn |
|
import numpy as np |
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
|
|
def warp_image(tensor_img, theta_warp, crop_size=112): |
|
|
|
|
|
theta_warp = torch.Tensor(theta_warp).unsqueeze(0).to(device) |
|
grid = F.affine_grid(theta_warp, tensor_img.size()) |
|
img_warped = F.grid_sample(tensor_img, grid) |
|
img_cropped = img_warped[:, :, 0:crop_size, 0:crop_size] |
|
return img_cropped |
|
|
|
|
|
def normalize_transforms(tfm, W, H): |
|
|
|
tfm_t = np.concatenate((tfm, np.array([[0, 0, 1]])), axis=0) |
|
transforms = np.linalg.inv(tfm_t)[0:2, :] |
|
transforms[0, 0] = transforms[0, 0] |
|
transforms[0, 1] = transforms[0, 1] * H / W |
|
transforms[0, 2] = ( |
|
transforms[0, 2] * 2 / W + transforms[0, 0] + transforms[0, 1] - 1 |
|
) |
|
|
|
transforms[1, 0] = transforms[1, 0] * W / H |
|
transforms[1, 1] = transforms[1, 1] |
|
transforms[1, 2] = ( |
|
transforms[1, 2] * 2 / H + transforms[1, 0] + transforms[1, 1] - 1 |
|
) |
|
|
|
return transforms |
|
|
|
|
|
def l2_norm(input, axis=1): |
|
|
|
norm = torch.norm(input, 2, axis, True) |
|
output = torch.div(input, norm) |
|
return output |
|
|
|
|
|
def de_preprocess(tensor): |
|
|
|
return tensor * 0.5 + 0.5 |
|
|
|
|
|
|
|
normalize = transforms.Compose([transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]) |
|
|
|
|
|
def normalize_batch(imgs_tensor): |
|
normalized_imgs = torch.empty_like(imgs_tensor) |
|
for i, img_ten in enumerate(imgs_tensor): |
|
normalized_imgs[i] = normalize(img_ten) |
|
|
|
return normalized_imgs |
|
|
|
|
|
def resize2d(img, size): |
|
|
|
return F.adaptive_avg_pool2d(img, size) |
|
|
|
|
|
class face_extractor(nn.Module): |
|
def __init__(self, crop_size=112, warp=False, theta_warp=None): |
|
super(face_extractor, self).__init__() |
|
self.crop_size = crop_size |
|
self.warp = warp |
|
self.theta_warp = theta_warp |
|
|
|
def forward(self, input): |
|
if self.warp: |
|
assert input.shape[0] == 1 |
|
input = warp_image(input, self.theta_warp, self.crop_size) |
|
|
|
return input |
|
|
|
|
|
class feature_extractor(nn.Module): |
|
def __init__(self, model, crop_size=112, tta=True, warp=False, theta_warp=None): |
|
super(feature_extractor, self).__init__() |
|
self.model = model |
|
self.crop_size = crop_size |
|
self.tta = tta |
|
self.warp = warp |
|
self.theta_warp = theta_warp |
|
|
|
self.model = model |
|
|
|
def forward(self, input): |
|
if self.warp: |
|
assert input.shape[0] == 1 |
|
input = warp_image(input, self.theta_warp, self.crop_size) |
|
|
|
batch_normalized = normalize_batch(input) |
|
batch_flipped = torch.flip(batch_normalized, [3]) |
|
|
|
self.model.eval() |
|
if self.tta: |
|
embed = self.model(batch_normalized) + self.model(batch_flipped) |
|
features = l2_norm(embed) |
|
else: |
|
features = l2_norm(self.model(batch_normalized)) |
|
return features |
|
|