lnky commited on
Commit
d6bbca8
1 Parent(s): 15dbbda

Delete utils

Browse files
utils/__init__.py DELETED
@@ -1 +0,0 @@
1
- # init
 
 
utils/__pycache__/__init__.cpython-310.pyc DELETED
Binary file (174 Bytes)
 
utils/__pycache__/autoanchor.cpython-310.pyc DELETED
Binary file (6.2 kB)
 
utils/__pycache__/datasets.cpython-310.pyc DELETED
Binary file (40.9 kB)
 
utils/__pycache__/general.cpython-310.pyc DELETED
Binary file (27.4 kB)
 
utils/__pycache__/google_utils.cpython-310.pyc DELETED
Binary file (3.4 kB)
 
utils/__pycache__/loss.cpython-310.pyc DELETED
Binary file (34 kB)
 
utils/__pycache__/metrics.cpython-310.pyc DELETED
Binary file (7.79 kB)
 
utils/__pycache__/plots.cpython-310.pyc DELETED
Binary file (18.1 kB)
 
utils/__pycache__/torch_utils.cpython-310.pyc DELETED
Binary file (13.4 kB)
 
utils/activations.py DELETED
@@ -1,72 +0,0 @@
1
- # Activation functions
2
-
3
- import torch
4
- import torch.nn as nn
5
- import torch.nn.functional as F
6
-
7
-
8
- # SiLU https://arxiv.org/pdf/1606.08415.pdf ----------------------------------------------------------------------------
9
- class SiLU(nn.Module): # export-friendly version of nn.SiLU()
10
- @staticmethod
11
- def forward(x):
12
- return x * torch.sigmoid(x)
13
-
14
-
15
- class Hardswish(nn.Module): # export-friendly version of nn.Hardswish()
16
- @staticmethod
17
- def forward(x):
18
- # return x * F.hardsigmoid(x) # for torchscript and CoreML
19
- return x * F.hardtanh(x + 3, 0., 6.) / 6. # for torchscript, CoreML and ONNX
20
-
21
-
22
- class MemoryEfficientSwish(nn.Module):
23
- class F(torch.autograd.Function):
24
- @staticmethod
25
- def forward(ctx, x):
26
- ctx.save_for_backward(x)
27
- return x * torch.sigmoid(x)
28
-
29
- @staticmethod
30
- def backward(ctx, grad_output):
31
- x = ctx.saved_tensors[0]
32
- sx = torch.sigmoid(x)
33
- return grad_output * (sx * (1 + x * (1 - sx)))
34
-
35
- def forward(self, x):
36
- return self.F.apply(x)
37
-
38
-
39
- # Mish https://github.com/digantamisra98/Mish --------------------------------------------------------------------------
40
- class Mish(nn.Module):
41
- @staticmethod
42
- def forward(x):
43
- return x * F.softplus(x).tanh()
44
-
45
-
46
- class MemoryEfficientMish(nn.Module):
47
- class F(torch.autograd.Function):
48
- @staticmethod
49
- def forward(ctx, x):
50
- ctx.save_for_backward(x)
51
- return x.mul(torch.tanh(F.softplus(x))) # x * tanh(ln(1 + exp(x)))
52
-
53
- @staticmethod
54
- def backward(ctx, grad_output):
55
- x = ctx.saved_tensors[0]
56
- sx = torch.sigmoid(x)
57
- fx = F.softplus(x).tanh()
58
- return grad_output * (fx + x * sx * (1 - fx * fx))
59
-
60
- def forward(self, x):
61
- return self.F.apply(x)
62
-
63
-
64
- # FReLU https://arxiv.org/abs/2007.11824 -------------------------------------------------------------------------------
65
- class FReLU(nn.Module):
66
- def __init__(self, c1, k=3): # ch_in, kernel
67
- super().__init__()
68
- self.conv = nn.Conv2d(c1, c1, k, 1, 1, groups=c1, bias=False)
69
- self.bn = nn.BatchNorm2d(c1)
70
-
71
- def forward(self, x):
72
- return torch.max(x, self.bn(self.conv(x)))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
utils/add_nms.py DELETED
@@ -1,155 +0,0 @@
1
- import numpy as np
2
- import onnx
3
- from onnx import shape_inference
4
- try:
5
- import onnx_graphsurgeon as gs
6
- except Exception as e:
7
- print('Import onnx_graphsurgeon failure: %s' % e)
8
-
9
- import logging
10
-
11
- LOGGER = logging.getLogger(__name__)
12
-
13
- class RegisterNMS(object):
14
- def __init__(
15
- self,
16
- onnx_model_path: str,
17
- precision: str = "fp32",
18
- ):
19
-
20
- self.graph = gs.import_onnx(onnx.load(onnx_model_path))
21
- assert self.graph
22
- LOGGER.info("ONNX graph created successfully")
23
- # Fold constants via ONNX-GS that PyTorch2ONNX may have missed
24
- self.graph.fold_constants()
25
- self.precision = precision
26
- self.batch_size = 1
27
- def infer(self):
28
- """
29
- Sanitize the graph by cleaning any unconnected nodes, do a topological resort,
30
- and fold constant inputs values. When possible, run shape inference on the
31
- ONNX graph to determine tensor shapes.
32
- """
33
- for _ in range(3):
34
- count_before = len(self.graph.nodes)
35
-
36
- self.graph.cleanup().toposort()
37
- try:
38
- for node in self.graph.nodes:
39
- for o in node.outputs:
40
- o.shape = None
41
- model = gs.export_onnx(self.graph)
42
- model = shape_inference.infer_shapes(model)
43
- self.graph = gs.import_onnx(model)
44
- except Exception as e:
45
- LOGGER.info(f"Shape inference could not be performed at this time:\n{e}")
46
- try:
47
- self.graph.fold_constants(fold_shapes=True)
48
- except TypeError as e:
49
- LOGGER.error(
50
- "This version of ONNX GraphSurgeon does not support folding shapes, "
51
- f"please upgrade your onnx_graphsurgeon module. Error:\n{e}"
52
- )
53
- raise
54
-
55
- count_after = len(self.graph.nodes)
56
- if count_before == count_after:
57
- # No new folding occurred in this iteration, so we can stop for now.
58
- break
59
-
60
- def save(self, output_path):
61
- """
62
- Save the ONNX model to the given location.
63
- Args:
64
- output_path: Path pointing to the location where to write
65
- out the updated ONNX model.
66
- """
67
- self.graph.cleanup().toposort()
68
- model = gs.export_onnx(self.graph)
69
- onnx.save(model, output_path)
70
- LOGGER.info(f"Saved ONNX model to {output_path}")
71
-
72
- def register_nms(
73
- self,
74
- *,
75
- score_thresh: float = 0.25,
76
- nms_thresh: float = 0.45,
77
- detections_per_img: int = 100,
78
- ):
79
- """
80
- Register the ``EfficientNMS_TRT`` plugin node.
81
- NMS expects these shapes for its input tensors:
82
- - box_net: [batch_size, number_boxes, 4]
83
- - class_net: [batch_size, number_boxes, number_labels]
84
- Args:
85
- score_thresh (float): The scalar threshold for score (low scoring boxes are removed).
86
- nms_thresh (float): The scalar threshold for IOU (new boxes that have high IOU
87
- overlap with previously selected boxes are removed).
88
- detections_per_img (int): Number of best detections to keep after NMS.
89
- """
90
-
91
- self.infer()
92
- # Find the concat node at the end of the network
93
- op_inputs = self.graph.outputs
94
- op = "EfficientNMS_TRT"
95
- attrs = {
96
- "plugin_version": "1",
97
- "background_class": -1, # no background class
98
- "max_output_boxes": detections_per_img,
99
- "score_threshold": score_thresh,
100
- "iou_threshold": nms_thresh,
101
- "score_activation": False,
102
- "box_coding": 0,
103
- }
104
-
105
- if self.precision == "fp32":
106
- dtype_output = np.float32
107
- elif self.precision == "fp16":
108
- dtype_output = np.float16
109
- else:
110
- raise NotImplementedError(f"Currently not supports precision: {self.precision}")
111
-
112
- # NMS Outputs
113
- output_num_detections = gs.Variable(
114
- name="num_dets",
115
- dtype=np.int32,
116
- shape=[self.batch_size, 1],
117
- ) # A scalar indicating the number of valid detections per batch image.
118
- output_boxes = gs.Variable(
119
- name="det_boxes",
120
- dtype=dtype_output,
121
- shape=[self.batch_size, detections_per_img, 4],
122
- )
123
- output_scores = gs.Variable(
124
- name="det_scores",
125
- dtype=dtype_output,
126
- shape=[self.batch_size, detections_per_img],
127
- )
128
- output_labels = gs.Variable(
129
- name="det_classes",
130
- dtype=np.int32,
131
- shape=[self.batch_size, detections_per_img],
132
- )
133
-
134
- op_outputs = [output_num_detections, output_boxes, output_scores, output_labels]
135
-
136
- # Create the NMS Plugin node with the selected inputs. The outputs of the node will also
137
- # become the final outputs of the graph.
138
- self.graph.layer(op=op, name="batched_nms", inputs=op_inputs, outputs=op_outputs, attrs=attrs)
139
- LOGGER.info(f"Created NMS plugin '{op}' with attributes: {attrs}")
140
-
141
- self.graph.outputs = op_outputs
142
-
143
- self.infer()
144
-
145
- def save(self, output_path):
146
- """
147
- Save the ONNX model to the given location.
148
- Args:
149
- output_path: Path pointing to the location where to write
150
- out the updated ONNX model.
151
- """
152
- self.graph.cleanup().toposort()
153
- model = gs.export_onnx(self.graph)
154
- onnx.save(model, output_path)
155
- LOGGER.info(f"Saved ONNX model to {output_path}")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
utils/autoanchor.py DELETED
@@ -1,160 +0,0 @@
1
- # Auto-anchor utils
2
-
3
- import numpy as np
4
- import torch
5
- import yaml
6
- from scipy.cluster.vq import kmeans
7
- from tqdm import tqdm
8
-
9
- from utils.general import colorstr
10
-
11
-
12
- def check_anchor_order(m):
13
- # Check anchor order against stride order for YOLO Detect() module m, and correct if necessary
14
- a = m.anchor_grid.prod(-1).view(-1) # anchor area
15
- da = a[-1] - a[0] # delta a
16
- ds = m.stride[-1] - m.stride[0] # delta s
17
- if da.sign() != ds.sign(): # same order
18
- print('Reversing anchor order')
19
- m.anchors[:] = m.anchors.flip(0)
20
- m.anchor_grid[:] = m.anchor_grid.flip(0)
21
-
22
-
23
- def check_anchors(dataset, model, thr=4.0, imgsz=640):
24
- # Check anchor fit to data, recompute if necessary
25
- prefix = colorstr('autoanchor: ')
26
- print(f'\n{prefix}Analyzing anchors... ', end='')
27
- m = model.module.model[-1] if hasattr(model, 'module') else model.model[-1] # Detect()
28
- shapes = imgsz * dataset.shapes / dataset.shapes.max(1, keepdims=True)
29
- scale = np.random.uniform(0.9, 1.1, size=(shapes.shape[0], 1)) # augment scale
30
- wh = torch.tensor(np.concatenate([l[:, 3:5] * s for s, l in zip(shapes * scale, dataset.labels)])).float() # wh
31
-
32
- def metric(k): # compute metric
33
- r = wh[:, None] / k[None]
34
- x = torch.min(r, 1. / r).min(2)[0] # ratio metric
35
- best = x.max(1)[0] # best_x
36
- aat = (x > 1. / thr).float().sum(1).mean() # anchors above threshold
37
- bpr = (best > 1. / thr).float().mean() # best possible recall
38
- return bpr, aat
39
-
40
- anchors = m.anchor_grid.clone().cpu().view(-1, 2) # current anchors
41
- bpr, aat = metric(anchors)
42
- print(f'anchors/target = {aat:.2f}, Best Possible Recall (BPR) = {bpr:.4f}', end='')
43
- if bpr < 0.98: # threshold to recompute
44
- print('. Attempting to improve anchors, please wait...')
45
- na = m.anchor_grid.numel() // 2 # number of anchors
46
- try:
47
- anchors = kmean_anchors(dataset, n=na, img_size=imgsz, thr=thr, gen=1000, verbose=False)
48
- except Exception as e:
49
- print(f'{prefix}ERROR: {e}')
50
- new_bpr = metric(anchors)[0]
51
- if new_bpr > bpr: # replace anchors
52
- anchors = torch.tensor(anchors, device=m.anchors.device).type_as(m.anchors)
53
- m.anchor_grid[:] = anchors.clone().view_as(m.anchor_grid) # for inference
54
- check_anchor_order(m)
55
- m.anchors[:] = anchors.clone().view_as(m.anchors) / m.stride.to(m.anchors.device).view(-1, 1, 1) # loss
56
- print(f'{prefix}New anchors saved to model. Update model *.yaml to use these anchors in the future.')
57
- else:
58
- print(f'{prefix}Original anchors better than new anchors. Proceeding with original anchors.')
59
- print('') # newline
60
-
61
-
62
- def kmean_anchors(path='./data/coco.yaml', n=9, img_size=640, thr=4.0, gen=1000, verbose=True):
63
- """ Creates kmeans-evolved anchors from training dataset
64
-
65
- Arguments:
66
- path: path to dataset *.yaml, or a loaded dataset
67
- n: number of anchors
68
- img_size: image size used for training
69
- thr: anchor-label wh ratio threshold hyperparameter hyp['anchor_t'] used for training, default=4.0
70
- gen: generations to evolve anchors using genetic algorithm
71
- verbose: print all results
72
-
73
- Return:
74
- k: kmeans evolved anchors
75
-
76
- Usage:
77
- from utils.autoanchor import *; _ = kmean_anchors()
78
- """
79
- thr = 1. / thr
80
- prefix = colorstr('autoanchor: ')
81
-
82
- def metric(k, wh): # compute metrics
83
- r = wh[:, None] / k[None]
84
- x = torch.min(r, 1. / r).min(2)[0] # ratio metric
85
- # x = wh_iou(wh, torch.tensor(k)) # iou metric
86
- return x, x.max(1)[0] # x, best_x
87
-
88
- def anchor_fitness(k): # mutation fitness
89
- _, best = metric(torch.tensor(k, dtype=torch.float32), wh)
90
- return (best * (best > thr).float()).mean() # fitness
91
-
92
- def print_results(k):
93
- k = k[np.argsort(k.prod(1))] # sort small to large
94
- x, best = metric(k, wh0)
95
- bpr, aat = (best > thr).float().mean(), (x > thr).float().mean() * n # best possible recall, anch > thr
96
- print(f'{prefix}thr={thr:.2f}: {bpr:.4f} best possible recall, {aat:.2f} anchors past thr')
97
- print(f'{prefix}n={n}, img_size={img_size}, metric_all={x.mean():.3f}/{best.mean():.3f}-mean/best, '
98
- f'past_thr={x[x > thr].mean():.3f}-mean: ', end='')
99
- for i, x in enumerate(k):
100
- print('%i,%i' % (round(x[0]), round(x[1])), end=', ' if i < len(k) - 1 else '\n') # use in *.cfg
101
- return k
102
-
103
- if isinstance(path, str): # *.yaml file
104
- with open(path) as f:
105
- data_dict = yaml.load(f, Loader=yaml.SafeLoader) # model dict
106
- from utils.datasets import LoadImagesAndLabels
107
- dataset = LoadImagesAndLabels(data_dict['train'], augment=True, rect=True)
108
- else:
109
- dataset = path # dataset
110
-
111
- # Get label wh
112
- shapes = img_size * dataset.shapes / dataset.shapes.max(1, keepdims=True)
113
- wh0 = np.concatenate([l[:, 3:5] * s for s, l in zip(shapes, dataset.labels)]) # wh
114
-
115
- # Filter
116
- i = (wh0 < 3.0).any(1).sum()
117
- if i:
118
- print(f'{prefix}WARNING: Extremely small objects found. {i} of {len(wh0)} labels are < 3 pixels in size.')
119
- wh = wh0[(wh0 >= 2.0).any(1)] # filter > 2 pixels
120
- # wh = wh * (np.random.rand(wh.shape[0], 1) * 0.9 + 0.1) # multiply by random scale 0-1
121
-
122
- # Kmeans calculation
123
- print(f'{prefix}Running kmeans for {n} anchors on {len(wh)} points...')
124
- s = wh.std(0) # sigmas for whitening
125
- k, dist = kmeans(wh / s, n, iter=30) # points, mean distance
126
- assert len(k) == n, print(f'{prefix}ERROR: scipy.cluster.vq.kmeans requested {n} points but returned only {len(k)}')
127
- k *= s
128
- wh = torch.tensor(wh, dtype=torch.float32) # filtered
129
- wh0 = torch.tensor(wh0, dtype=torch.float32) # unfiltered
130
- k = print_results(k)
131
-
132
- # Plot
133
- # k, d = [None] * 20, [None] * 20
134
- # for i in tqdm(range(1, 21)):
135
- # k[i-1], d[i-1] = kmeans(wh / s, i) # points, mean distance
136
- # fig, ax = plt.subplots(1, 2, figsize=(14, 7), tight_layout=True)
137
- # ax = ax.ravel()
138
- # ax[0].plot(np.arange(1, 21), np.array(d) ** 2, marker='.')
139
- # fig, ax = plt.subplots(1, 2, figsize=(14, 7)) # plot wh
140
- # ax[0].hist(wh[wh[:, 0]<100, 0],400)
141
- # ax[1].hist(wh[wh[:, 1]<100, 1],400)
142
- # fig.savefig('wh.png', dpi=200)
143
-
144
- # Evolve
145
- npr = np.random
146
- f, sh, mp, s = anchor_fitness(k), k.shape, 0.9, 0.1 # fitness, generations, mutation prob, sigma
147
- pbar = tqdm(range(gen), desc=f'{prefix}Evolving anchors with Genetic Algorithm:') # progress bar
148
- for _ in pbar:
149
- v = np.ones(sh)
150
- while (v == 1).all(): # mutate until a change occurs (prevent duplicates)
151
- v = ((npr.random(sh) < mp) * npr.random() * npr.randn(*sh) * s + 1).clip(0.3, 3.0)
152
- kg = (k.copy() * v).clip(min=2.0)
153
- fg = anchor_fitness(kg)
154
- if fg > f:
155
- f, k = fg, kg.copy()
156
- pbar.desc = f'{prefix}Evolving anchors with Genetic Algorithm: fitness = {f:.4f}'
157
- if verbose:
158
- print_results(k)
159
-
160
- return print_results(k)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
utils/aws/__init__.py DELETED
@@ -1 +0,0 @@
1
- #init
 
 
utils/aws/mime.sh DELETED
@@ -1,26 +0,0 @@
1
- # AWS EC2 instance startup 'MIME' script https://aws.amazon.com/premiumsupport/knowledge-center/execute-user-data-ec2/
2
- # This script will run on every instance restart, not only on first start
3
- # --- DO NOT COPY ABOVE COMMENTS WHEN PASTING INTO USERDATA ---
4
-
5
- Content-Type: multipart/mixed; boundary="//"
6
- MIME-Version: 1.0
7
-
8
- --//
9
- Content-Type: text/cloud-config; charset="us-ascii"
10
- MIME-Version: 1.0
11
- Content-Transfer-Encoding: 7bit
12
- Content-Disposition: attachment; filename="cloud-config.txt"
13
-
14
- #cloud-config
15
- cloud_final_modules:
16
- - [scripts-user, always]
17
-
18
- --//
19
- Content-Type: text/x-shellscript; charset="us-ascii"
20
- MIME-Version: 1.0
21
- Content-Transfer-Encoding: 7bit
22
- Content-Disposition: attachment; filename="userdata.txt"
23
-
24
- #!/bin/bash
25
- # --- paste contents of userdata.sh here ---
26
- --//
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
utils/aws/resume.py DELETED
@@ -1,37 +0,0 @@
1
- # Resume all interrupted trainings in yolor/ dir including DDP trainings
2
- # Usage: $ python utils/aws/resume.py
3
-
4
- import os
5
- import sys
6
- from pathlib import Path
7
-
8
- import torch
9
- import yaml
10
-
11
- sys.path.append('./') # to run '$ python *.py' files in subdirectories
12
-
13
- port = 0 # --master_port
14
- path = Path('').resolve()
15
- for last in path.rglob('*/**/last.pt'):
16
- ckpt = torch.load(last)
17
- if ckpt['optimizer'] is None:
18
- continue
19
-
20
- # Load opt.yaml
21
- with open(last.parent.parent / 'opt.yaml') as f:
22
- opt = yaml.load(f, Loader=yaml.SafeLoader)
23
-
24
- # Get device count
25
- d = opt['device'].split(',') # devices
26
- nd = len(d) # number of devices
27
- ddp = nd > 1 or (nd == 0 and torch.cuda.device_count() > 1) # distributed data parallel
28
-
29
- if ddp: # multi-GPU
30
- port += 1
31
- cmd = f'python -m torch.distributed.launch --nproc_per_node {nd} --master_port {port} train.py --resume {last}'
32
- else: # single-GPU
33
- cmd = f'python train.py --resume {last}'
34
-
35
- cmd += ' > /dev/null 2>&1 &' # redirect output to dev/null and run in daemon thread
36
- print(cmd)
37
- os.system(cmd)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
utils/aws/userdata.sh DELETED
@@ -1,27 +0,0 @@
1
- #!/bin/bash
2
- # AWS EC2 instance startup script https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/user-data.html
3
- # This script will run only once on first instance start (for a re-start script see mime.sh)
4
- # /home/ubuntu (ubuntu) or /home/ec2-user (amazon-linux) is working dir
5
- # Use >300 GB SSD
6
-
7
- cd home/ubuntu
8
- if [ ! -d yolor ]; then
9
- echo "Running first-time script." # install dependencies, download COCO, pull Docker
10
- git clone -b main https://github.com/WongKinYiu/yolov7 && sudo chmod -R 777 yolov7
11
- cd yolov7
12
- bash data/scripts/get_coco.sh && echo "Data done." &
13
- sudo docker pull nvcr.io/nvidia/pytorch:21.08-py3 && echo "Docker done." &
14
- python -m pip install --upgrade pip && pip install -r requirements.txt && python detect.py && echo "Requirements done." &
15
- wait && echo "All tasks done." # finish background tasks
16
- else
17
- echo "Running re-start script." # resume interrupted runs
18
- i=0
19
- list=$(sudo docker ps -qa) # container list i.e. $'one\ntwo\nthree\nfour'
20
- while IFS= read -r id; do
21
- ((i++))
22
- echo "restarting container $i: $id"
23
- sudo docker start $id
24
- # sudo docker exec -it $id python train.py --resume # single-GPU
25
- sudo docker exec -d $id python utils/aws/resume.py # multi-scenario
26
- done <<<"$list"
27
- fi
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
utils/datasets.py DELETED
@@ -1,1320 +0,0 @@
1
- # Dataset utils and dataloaders
2
-
3
- import glob
4
- import logging
5
- import math
6
- import os
7
- import random
8
- import shutil
9
- import time
10
- from itertools import repeat
11
- from multiprocessing.pool import ThreadPool
12
- from pathlib import Path
13
- from threading import Thread
14
-
15
- import cv2
16
- import numpy as np
17
- import torch
18
- import torch.nn.functional as F
19
- from PIL import Image, ExifTags
20
- from torch.utils.data import Dataset
21
- from tqdm import tqdm
22
-
23
- import pickle
24
- from copy import deepcopy
25
- #from pycocotools import mask as maskUtils
26
- from torchvision.utils import save_image
27
- from torchvision.ops import roi_pool, roi_align, ps_roi_pool, ps_roi_align
28
-
29
- from utils.general import check_requirements, xyxy2xywh, xywh2xyxy, xywhn2xyxy, xyn2xy, segment2box, segments2boxes, \
30
- resample_segments, clean_str
31
- from utils.torch_utils import torch_distributed_zero_first
32
-
33
- # Parameters
34
- help_url = 'https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data'
35
- img_formats = ['bmp', 'jpg', 'jpeg', 'png', 'tif', 'tiff', 'dng', 'webp', 'mpo'] # acceptable image suffixes
36
- vid_formats = ['mov', 'avi', 'mp4', 'mpg', 'mpeg', 'm4v', 'wmv', 'mkv'] # acceptable video suffixes
37
- logger = logging.getLogger(__name__)
38
-
39
- # Get orientation exif tag
40
- for orientation in ExifTags.TAGS.keys():
41
- if ExifTags.TAGS[orientation] == 'Orientation':
42
- break
43
-
44
-
45
- def get_hash(files):
46
- # Returns a single hash value of a list of files
47
- return sum(os.path.getsize(f) for f in files if os.path.isfile(f))
48
-
49
-
50
- def exif_size(img):
51
- # Returns exif-corrected PIL size
52
- s = img.size # (width, height)
53
- try:
54
- rotation = dict(img._getexif().items())[orientation]
55
- if rotation == 6: # rotation 270
56
- s = (s[1], s[0])
57
- elif rotation == 8: # rotation 90
58
- s = (s[1], s[0])
59
- except:
60
- pass
61
-
62
- return s
63
-
64
-
65
- def create_dataloader(path, imgsz, batch_size, stride, opt, hyp=None, augment=False, cache=False, pad=0.0, rect=False,
66
- rank=-1, world_size=1, workers=8, image_weights=False, quad=False, prefix=''):
67
- # Make sure only the first process in DDP process the dataset first, and the following others can use the cache
68
- with torch_distributed_zero_first(rank):
69
- dataset = LoadImagesAndLabels(path, imgsz, batch_size,
70
- augment=augment, # augment images
71
- hyp=hyp, # augmentation hyperparameters
72
- rect=rect, # rectangular training
73
- cache_images=cache,
74
- single_cls=opt.single_cls,
75
- stride=int(stride),
76
- pad=pad,
77
- image_weights=image_weights,
78
- prefix=prefix)
79
-
80
- batch_size = min(batch_size, len(dataset))
81
- nw = min([os.cpu_count() // world_size, batch_size if batch_size > 1 else 0, workers]) # number of workers
82
- sampler = torch.utils.data.distributed.DistributedSampler(dataset) if rank != -1 else None
83
- loader = torch.utils.data.DataLoader if image_weights else InfiniteDataLoader
84
- # Use torch.utils.data.DataLoader() if dataset.properties will update during training else InfiniteDataLoader()
85
- dataloader = loader(dataset,
86
- batch_size=batch_size,
87
- num_workers=nw,
88
- sampler=sampler,
89
- pin_memory=True,
90
- collate_fn=LoadImagesAndLabels.collate_fn4 if quad else LoadImagesAndLabels.collate_fn)
91
- return dataloader, dataset
92
-
93
-
94
- class InfiniteDataLoader(torch.utils.data.dataloader.DataLoader):
95
- """ Dataloader that reuses workers
96
-
97
- Uses same syntax as vanilla DataLoader
98
- """
99
-
100
- def __init__(self, *args, **kwargs):
101
- super().__init__(*args, **kwargs)
102
- object.__setattr__(self, 'batch_sampler', _RepeatSampler(self.batch_sampler))
103
- self.iterator = super().__iter__()
104
-
105
- def __len__(self):
106
- return len(self.batch_sampler.sampler)
107
-
108
- def __iter__(self):
109
- for i in range(len(self)):
110
- yield next(self.iterator)
111
-
112
-
113
- class _RepeatSampler(object):
114
- """ Sampler that repeats forever
115
-
116
- Args:
117
- sampler (Sampler)
118
- """
119
-
120
- def __init__(self, sampler):
121
- self.sampler = sampler
122
-
123
- def __iter__(self):
124
- while True:
125
- yield from iter(self.sampler)
126
-
127
-
128
- class LoadImages: # for inference
129
- def __init__(self, path, img_size=640, stride=32):
130
- p = str(Path(path).absolute()) # os-agnostic absolute path
131
- if '*' in p:
132
- files = sorted(glob.glob(p, recursive=True)) # glob
133
- elif os.path.isdir(p):
134
- files = sorted(glob.glob(os.path.join(p, '*.*'))) # dir
135
- elif os.path.isfile(p):
136
- files = [p] # files
137
- else:
138
- raise Exception(f'ERROR: {p} does not exist')
139
-
140
- images = [x for x in files if x.split('.')[-1].lower() in img_formats]
141
- videos = [x for x in files if x.split('.')[-1].lower() in vid_formats]
142
- ni, nv = len(images), len(videos)
143
-
144
- self.img_size = img_size
145
- self.stride = stride
146
- self.files = images + videos
147
- self.nf = ni + nv # number of files
148
- self.video_flag = [False] * ni + [True] * nv
149
- self.mode = 'image'
150
- if any(videos):
151
- self.new_video(videos[0]) # new video
152
- else:
153
- self.cap = None
154
- assert self.nf > 0, f'No images or videos found in {p}. ' \
155
- f'Supported formats are:\nimages: {img_formats}\nvideos: {vid_formats}'
156
-
157
- def __iter__(self):
158
- self.count = 0
159
- return self
160
-
161
- def __next__(self):
162
- if self.count == self.nf:
163
- raise StopIteration
164
- path = self.files[self.count]
165
-
166
- if self.video_flag[self.count]:
167
- # Read video
168
- self.mode = 'video'
169
- ret_val, img0 = self.cap.read()
170
- if not ret_val:
171
- self.count += 1
172
- self.cap.release()
173
- if self.count == self.nf: # last video
174
- raise StopIteration
175
- else:
176
- path = self.files[self.count]
177
- self.new_video(path)
178
- ret_val, img0 = self.cap.read()
179
-
180
- self.frame += 1
181
- print(f'video {self.count + 1}/{self.nf} ({self.frame}/{self.nframes}) {path}: ', end='')
182
-
183
- else:
184
- # Read image
185
- self.count += 1
186
- img0 = cv2.imread(path) # BGR
187
- assert img0 is not None, 'Image Not Found ' + path
188
- #print(f'image {self.count}/{self.nf} {path}: ', end='')
189
-
190
- # Padded resize
191
- img = letterbox(img0, self.img_size, stride=self.stride)[0]
192
-
193
- # Convert
194
- img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
195
- img = np.ascontiguousarray(img)
196
-
197
- return path, img, img0, self.cap
198
-
199
- def new_video(self, path):
200
- self.frame = 0
201
- self.cap = cv2.VideoCapture(path)
202
- self.nframes = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT))
203
-
204
- def __len__(self):
205
- return self.nf # number of files
206
-
207
-
208
- class LoadWebcam: # for inference
209
- def __init__(self, pipe='0', img_size=640, stride=32):
210
- self.img_size = img_size
211
- self.stride = stride
212
-
213
- if pipe.isnumeric():
214
- pipe = eval(pipe) # local camera
215
- # pipe = 'rtsp://192.168.1.64/1' # IP camera
216
- # pipe = 'rtsp://username:password@192.168.1.64/1' # IP camera with login
217
- # pipe = 'http://wmccpinetop.axiscam.net/mjpg/video.mjpg' # IP golf camera
218
-
219
- self.pipe = pipe
220
- self.cap = cv2.VideoCapture(pipe) # video capture object
221
- self.cap.set(cv2.CAP_PROP_BUFFERSIZE, 3) # set buffer size
222
-
223
- def __iter__(self):
224
- self.count = -1
225
- return self
226
-
227
- def __next__(self):
228
- self.count += 1
229
- if cv2.waitKey(1) == ord('q'): # q to quit
230
- self.cap.release()
231
- cv2.destroyAllWindows()
232
- raise StopIteration
233
-
234
- # Read frame
235
- if self.pipe == 0: # local camera
236
- ret_val, img0 = self.cap.read()
237
- img0 = cv2.flip(img0, 1) # flip left-right
238
- else: # IP camera
239
- n = 0
240
- while True:
241
- n += 1
242
- self.cap.grab()
243
- if n % 30 == 0: # skip frames
244
- ret_val, img0 = self.cap.retrieve()
245
- if ret_val:
246
- break
247
-
248
- # Print
249
- assert ret_val, f'Camera Error {self.pipe}'
250
- img_path = 'webcam.jpg'
251
- print(f'webcam {self.count}: ', end='')
252
-
253
- # Padded resize
254
- img = letterbox(img0, self.img_size, stride=self.stride)[0]
255
-
256
- # Convert
257
- img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
258
- img = np.ascontiguousarray(img)
259
-
260
- return img_path, img, img0, None
261
-
262
- def __len__(self):
263
- return 0
264
-
265
-
266
- class LoadStreams: # multiple IP or RTSP cameras
267
- def __init__(self, sources='streams.txt', img_size=640, stride=32):
268
- self.mode = 'stream'
269
- self.img_size = img_size
270
- self.stride = stride
271
-
272
- if os.path.isfile(sources):
273
- with open(sources, 'r') as f:
274
- sources = [x.strip() for x in f.read().strip().splitlines() if len(x.strip())]
275
- else:
276
- sources = [sources]
277
-
278
- n = len(sources)
279
- self.imgs = [None] * n
280
- self.sources = [clean_str(x) for x in sources] # clean source names for later
281
- for i, s in enumerate(sources):
282
- # Start the thread to read frames from the video stream
283
- print(f'{i + 1}/{n}: {s}... ', end='')
284
- url = eval(s) if s.isnumeric() else s
285
- if 'youtube.com/' in str(url) or 'youtu.be/' in str(url): # if source is YouTube video
286
- check_requirements(('pafy', 'youtube_dl'))
287
- import pafy
288
- url = pafy.new(url).getbest(preftype="mp4").url
289
- cap = cv2.VideoCapture(url)
290
- assert cap.isOpened(), f'Failed to open {s}'
291
- w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
292
- h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
293
- self.fps = cap.get(cv2.CAP_PROP_FPS) % 100
294
-
295
- _, self.imgs[i] = cap.read() # guarantee first frame
296
- thread = Thread(target=self.update, args=([i, cap]), daemon=True)
297
- print(f' success ({w}x{h} at {self.fps:.2f} FPS).')
298
- thread.start()
299
- print('') # newline
300
-
301
- # check for common shapes
302
- s = np.stack([letterbox(x, self.img_size, stride=self.stride)[0].shape for x in self.imgs], 0) # shapes
303
- self.rect = np.unique(s, axis=0).shape[0] == 1 # rect inference if all shapes equal
304
- if not self.rect:
305
- print('WARNING: Different stream shapes detected. For optimal performance supply similarly-shaped streams.')
306
-
307
- def update(self, index, cap):
308
- # Read next stream frame in a daemon thread
309
- n = 0
310
- while cap.isOpened():
311
- n += 1
312
- # _, self.imgs[index] = cap.read()
313
- cap.grab()
314
- if n == 4: # read every 4th frame
315
- success, im = cap.retrieve()
316
- self.imgs[index] = im if success else self.imgs[index] * 0
317
- n = 0
318
- time.sleep(1 / self.fps) # wait time
319
-
320
- def __iter__(self):
321
- self.count = -1
322
- return self
323
-
324
- def __next__(self):
325
- self.count += 1
326
- img0 = self.imgs.copy()
327
- if cv2.waitKey(1) == ord('q'): # q to quit
328
- cv2.destroyAllWindows()
329
- raise StopIteration
330
-
331
- # Letterbox
332
- img = [letterbox(x, self.img_size, auto=self.rect, stride=self.stride)[0] for x in img0]
333
-
334
- # Stack
335
- img = np.stack(img, 0)
336
-
337
- # Convert
338
- img = img[:, :, :, ::-1].transpose(0, 3, 1, 2) # BGR to RGB, to bsx3x416x416
339
- img = np.ascontiguousarray(img)
340
-
341
- return self.sources, img, img0, None
342
-
343
- def __len__(self):
344
- return 0 # 1E12 frames = 32 streams at 30 FPS for 30 years
345
-
346
-
347
- def img2label_paths(img_paths):
348
- # Define label paths as a function of image paths
349
- sa, sb = os.sep + 'images' + os.sep, os.sep + 'labels' + os.sep # /images/, /labels/ substrings
350
- return ['txt'.join(x.replace(sa, sb, 1).rsplit(x.split('.')[-1], 1)) for x in img_paths]
351
-
352
-
353
- class LoadImagesAndLabels(Dataset): # for training/testing
354
- def __init__(self, path, img_size=640, batch_size=16, augment=False, hyp=None, rect=False, image_weights=False,
355
- cache_images=False, single_cls=False, stride=32, pad=0.0, prefix=''):
356
- self.img_size = img_size
357
- self.augment = augment
358
- self.hyp = hyp
359
- self.image_weights = image_weights
360
- self.rect = False if image_weights else rect
361
- self.mosaic = self.augment and not self.rect # load 4 images at a time into a mosaic (only during training)
362
- self.mosaic_border = [-img_size // 2, -img_size // 2]
363
- self.stride = stride
364
- self.path = path
365
- #self.albumentations = Albumentations() if augment else None
366
-
367
- try:
368
- f = [] # image files
369
- for p in path if isinstance(path, list) else [path]:
370
- p = Path(p) # os-agnostic
371
- if p.is_dir(): # dir
372
- f += glob.glob(str(p / '**' / '*.*'), recursive=True)
373
- # f = list(p.rglob('**/*.*')) # pathlib
374
- elif p.is_file(): # file
375
- with open(p, 'r') as t:
376
- t = t.read().strip().splitlines()
377
- parent = str(p.parent) + os.sep
378
- f += [x.replace('./', parent) if x.startswith('./') else x for x in t] # local to global path
379
- # f += [p.parent / x.lstrip(os.sep) for x in t] # local to global path (pathlib)
380
- else:
381
- raise Exception(f'{prefix}{p} does not exist')
382
- self.img_files = sorted([x.replace('/', os.sep) for x in f if x.split('.')[-1].lower() in img_formats])
383
- # self.img_files = sorted([x for x in f if x.suffix[1:].lower() in img_formats]) # pathlib
384
- assert self.img_files, f'{prefix}No images found'
385
- except Exception as e:
386
- raise Exception(f'{prefix}Error loading data from {path}: {e}\nSee {help_url}')
387
-
388
- # Check cache
389
- self.label_files = img2label_paths(self.img_files) # labels
390
- cache_path = (p if p.is_file() else Path(self.label_files[0]).parent).with_suffix('.cache') # cached labels
391
- if cache_path.is_file():
392
- cache, exists = torch.load(cache_path), True # load
393
- #if cache['hash'] != get_hash(self.label_files + self.img_files) or 'version' not in cache: # changed
394
- # cache, exists = self.cache_labels(cache_path, prefix), False # re-cache
395
- else:
396
- cache, exists = self.cache_labels(cache_path, prefix), False # cache
397
-
398
- # Display cache
399
- nf, nm, ne, nc, n = cache.pop('results') # found, missing, empty, corrupted, total
400
- if exists:
401
- d = f"Scanning '{cache_path}' images and labels... {nf} found, {nm} missing, {ne} empty, {nc} corrupted"
402
- tqdm(None, desc=prefix + d, total=n, initial=n) # display cache results
403
- assert nf > 0 or not augment, f'{prefix}No labels in {cache_path}. Can not train without labels. See {help_url}'
404
-
405
- # Read cache
406
- cache.pop('hash') # remove hash
407
- cache.pop('version') # remove version
408
- labels, shapes, self.segments = zip(*cache.values())
409
- self.labels = list(labels)
410
- self.shapes = np.array(shapes, dtype=np.float64)
411
- self.img_files = list(cache.keys()) # update
412
- self.label_files = img2label_paths(cache.keys()) # update
413
- if single_cls:
414
- for x in self.labels:
415
- x[:, 0] = 0
416
-
417
- n = len(shapes) # number of images
418
- bi = np.floor(np.arange(n) / batch_size).astype(int) # batch index
419
- nb = bi[-1] + 1 # number of batches
420
- self.batch = bi # batch index of image
421
- self.n = n
422
- self.indices = range(n)
423
-
424
- # Rectangular Training
425
- if self.rect:
426
- # Sort by aspect ratio
427
- s = self.shapes # wh
428
- ar = s[:, 1] / s[:, 0] # aspect ratio
429
- irect = ar.argsort()
430
- self.img_files = [self.img_files[i] for i in irect]
431
- self.label_files = [self.label_files[i] for i in irect]
432
- self.labels = [self.labels[i] for i in irect]
433
- self.shapes = s[irect] # wh
434
- ar = ar[irect]
435
-
436
- # Set training image shapes
437
- shapes = [[1, 1]] * nb
438
- for i in range(nb):
439
- ari = ar[bi == i]
440
- mini, maxi = ari.min(), ari.max()
441
- if maxi < 1:
442
- shapes[i] = [maxi, 1]
443
- elif mini > 1:
444
- shapes[i] = [1, 1 / mini]
445
-
446
- self.batch_shapes = np.ceil(np.array(shapes) * img_size / stride + pad).astype(int) * stride
447
-
448
- # Cache images into memory for faster training (WARNING: large datasets may exceed system RAM)
449
- self.imgs = [None] * n
450
- if cache_images:
451
- if cache_images == 'disk':
452
- self.im_cache_dir = Path(Path(self.img_files[0]).parent.as_posix() + '_npy')
453
- self.img_npy = [self.im_cache_dir / Path(f).with_suffix('.npy').name for f in self.img_files]
454
- self.im_cache_dir.mkdir(parents=True, exist_ok=True)
455
- gb = 0 # Gigabytes of cached images
456
- self.img_hw0, self.img_hw = [None] * n, [None] * n
457
- results = ThreadPool(8).imap(lambda x: load_image(*x), zip(repeat(self), range(n)))
458
- pbar = tqdm(enumerate(results), total=n)
459
- for i, x in pbar:
460
- if cache_images == 'disk':
461
- if not self.img_npy[i].exists():
462
- np.save(self.img_npy[i].as_posix(), x[0])
463
- gb += self.img_npy[i].stat().st_size
464
- else:
465
- self.imgs[i], self.img_hw0[i], self.img_hw[i] = x
466
- gb += self.imgs[i].nbytes
467
- pbar.desc = f'{prefix}Caching images ({gb / 1E9:.1f}GB)'
468
- pbar.close()
469
-
470
- def cache_labels(self, path=Path('./labels.cache'), prefix=''):
471
- # Cache dataset labels, check images and read shapes
472
- x = {} # dict
473
- nm, nf, ne, nc = 0, 0, 0, 0 # number missing, found, empty, duplicate
474
- pbar = tqdm(zip(self.img_files, self.label_files), desc='Scanning images', total=len(self.img_files))
475
- for i, (im_file, lb_file) in enumerate(pbar):
476
- try:
477
- # verify images
478
- im = Image.open(im_file)
479
- im.verify() # PIL verify
480
- shape = exif_size(im) # image size
481
- segments = [] # instance segments
482
- assert (shape[0] > 9) & (shape[1] > 9), f'image size {shape} <10 pixels'
483
- assert im.format.lower() in img_formats, f'invalid image format {im.format}'
484
-
485
- # verify labels
486
- if os.path.isfile(lb_file):
487
- nf += 1 # label found
488
- with open(lb_file, 'r') as f:
489
- l = [x.split() for x in f.read().strip().splitlines()]
490
- if any([len(x) > 8 for x in l]): # is segment
491
- classes = np.array([x[0] for x in l], dtype=np.float32)
492
- segments = [np.array(x[1:], dtype=np.float32).reshape(-1, 2) for x in l] # (cls, xy1...)
493
- l = np.concatenate((classes.reshape(-1, 1), segments2boxes(segments)), 1) # (cls, xywh)
494
- l = np.array(l, dtype=np.float32)
495
- if len(l):
496
- assert l.shape[1] == 5, 'labels require 5 columns each'
497
- assert (l >= 0).all(), 'negative labels'
498
- assert (l[:, 1:] <= 1).all(), 'non-normalized or out of bounds coordinate labels'
499
- assert np.unique(l, axis=0).shape[0] == l.shape[0], 'duplicate labels'
500
- else:
501
- ne += 1 # label empty
502
- l = np.zeros((0, 5), dtype=np.float32)
503
- else:
504
- nm += 1 # label missing
505
- l = np.zeros((0, 5), dtype=np.float32)
506
- x[im_file] = [l, shape, segments]
507
- except Exception as e:
508
- nc += 1
509
- print(f'{prefix}WARNING: Ignoring corrupted image and/or label {im_file}: {e}')
510
-
511
- pbar.desc = f"{prefix}Scanning '{path.parent / path.stem}' images and labels... " \
512
- f"{nf} found, {nm} missing, {ne} empty, {nc} corrupted"
513
- pbar.close()
514
-
515
- if nf == 0:
516
- print(f'{prefix}WARNING: No labels found in {path}. See {help_url}')
517
-
518
- x['hash'] = get_hash(self.label_files + self.img_files)
519
- x['results'] = nf, nm, ne, nc, i + 1
520
- x['version'] = 0.1 # cache version
521
- torch.save(x, path) # save for next time
522
- logging.info(f'{prefix}New cache created: {path}')
523
- return x
524
-
525
- def __len__(self):
526
- return len(self.img_files)
527
-
528
- # def __iter__(self):
529
- # self.count = -1
530
- # print('ran dataset iter')
531
- # #self.shuffled_vector = np.random.permutation(self.nF) if self.augment else np.arange(self.nF)
532
- # return self
533
-
534
- def __getitem__(self, index):
535
- index = self.indices[index] # linear, shuffled, or image_weights
536
-
537
- hyp = self.hyp
538
- mosaic = self.mosaic and random.random() < hyp['mosaic']
539
- if mosaic:
540
- # Load mosaic
541
- if random.random() < 0.8:
542
- img, labels = load_mosaic(self, index)
543
- else:
544
- img, labels = load_mosaic9(self, index)
545
- shapes = None
546
-
547
- # MixUp https://arxiv.org/pdf/1710.09412.pdf
548
- if random.random() < hyp['mixup']:
549
- if random.random() < 0.8:
550
- img2, labels2 = load_mosaic(self, random.randint(0, len(self.labels) - 1))
551
- else:
552
- img2, labels2 = load_mosaic9(self, random.randint(0, len(self.labels) - 1))
553
- r = np.random.beta(8.0, 8.0) # mixup ratio, alpha=beta=8.0
554
- img = (img * r + img2 * (1 - r)).astype(np.uint8)
555
- labels = np.concatenate((labels, labels2), 0)
556
-
557
- else:
558
- # Load image
559
- img, (h0, w0), (h, w) = load_image(self, index)
560
-
561
- # Letterbox
562
- shape = self.batch_shapes[self.batch[index]] if self.rect else self.img_size # final letterboxed shape
563
- img, ratio, pad = letterbox(img, shape, auto=False, scaleup=self.augment)
564
- shapes = (h0, w0), ((h / h0, w / w0), pad) # for COCO mAP rescaling
565
-
566
- labels = self.labels[index].copy()
567
- if labels.size: # normalized xywh to pixel xyxy format
568
- labels[:, 1:] = xywhn2xyxy(labels[:, 1:], ratio[0] * w, ratio[1] * h, padw=pad[0], padh=pad[1])
569
-
570
- if self.augment:
571
- # Augment imagespace
572
- if not mosaic:
573
- img, labels = random_perspective(img, labels,
574
- degrees=hyp['degrees'],
575
- translate=hyp['translate'],
576
- scale=hyp['scale'],
577
- shear=hyp['shear'],
578
- perspective=hyp['perspective'])
579
-
580
-
581
- #img, labels = self.albumentations(img, labels)
582
-
583
- # Augment colorspace
584
- augment_hsv(img, hgain=hyp['hsv_h'], sgain=hyp['hsv_s'], vgain=hyp['hsv_v'])
585
-
586
- # Apply cutouts
587
- # if random.random() < 0.9:
588
- # labels = cutout(img, labels)
589
-
590
- if random.random() < hyp['paste_in']:
591
- sample_labels, sample_images, sample_masks = [], [], []
592
- while len(sample_labels) < 30:
593
- sample_labels_, sample_images_, sample_masks_ = load_samples(self, random.randint(0, len(self.labels) - 1))
594
- sample_labels += sample_labels_
595
- sample_images += sample_images_
596
- sample_masks += sample_masks_
597
- #print(len(sample_labels))
598
- if len(sample_labels) == 0:
599
- break
600
- labels = pastein(img, labels, sample_labels, sample_images, sample_masks)
601
-
602
- nL = len(labels) # number of labels
603
- if nL:
604
- labels[:, 1:5] = xyxy2xywh(labels[:, 1:5]) # convert xyxy to xywh
605
- labels[:, [2, 4]] /= img.shape[0] # normalized height 0-1
606
- labels[:, [1, 3]] /= img.shape[1] # normalized width 0-1
607
-
608
- if self.augment:
609
- # flip up-down
610
- if random.random() < hyp['flipud']:
611
- img = np.flipud(img)
612
- if nL:
613
- labels[:, 2] = 1 - labels[:, 2]
614
-
615
- # flip left-right
616
- if random.random() < hyp['fliplr']:
617
- img = np.fliplr(img)
618
- if nL:
619
- labels[:, 1] = 1 - labels[:, 1]
620
-
621
- labels_out = torch.zeros((nL, 6))
622
- if nL:
623
- labels_out[:, 1:] = torch.from_numpy(labels)
624
-
625
- # Convert
626
- img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
627
- img = np.ascontiguousarray(img)
628
-
629
- return torch.from_numpy(img), labels_out, self.img_files[index], shapes
630
-
631
- @staticmethod
632
- def collate_fn(batch):
633
- img, label, path, shapes = zip(*batch) # transposed
634
- for i, l in enumerate(label):
635
- l[:, 0] = i # add target image index for build_targets()
636
- return torch.stack(img, 0), torch.cat(label, 0), path, shapes
637
-
638
- @staticmethod
639
- def collate_fn4(batch):
640
- img, label, path, shapes = zip(*batch) # transposed
641
- n = len(shapes) // 4
642
- img4, label4, path4, shapes4 = [], [], path[:n], shapes[:n]
643
-
644
- ho = torch.tensor([[0., 0, 0, 1, 0, 0]])
645
- wo = torch.tensor([[0., 0, 1, 0, 0, 0]])
646
- s = torch.tensor([[1, 1, .5, .5, .5, .5]]) # scale
647
- for i in range(n): # zidane torch.zeros(16,3,720,1280) # BCHW
648
- i *= 4
649
- if random.random() < 0.5:
650
- im = F.interpolate(img[i].unsqueeze(0).float(), scale_factor=2., mode='bilinear', align_corners=False)[
651
- 0].type(img[i].type())
652
- l = label[i]
653
- else:
654
- im = torch.cat((torch.cat((img[i], img[i + 1]), 1), torch.cat((img[i + 2], img[i + 3]), 1)), 2)
655
- l = torch.cat((label[i], label[i + 1] + ho, label[i + 2] + wo, label[i + 3] + ho + wo), 0) * s
656
- img4.append(im)
657
- label4.append(l)
658
-
659
- for i, l in enumerate(label4):
660
- l[:, 0] = i # add target image index for build_targets()
661
-
662
- return torch.stack(img4, 0), torch.cat(label4, 0), path4, shapes4
663
-
664
-
665
- # Ancillary functions --------------------------------------------------------------------------------------------------
666
- def load_image(self, index):
667
- # loads 1 image from dataset, returns img, original hw, resized hw
668
- img = self.imgs[index]
669
- if img is None: # not cached
670
- path = self.img_files[index]
671
- img = cv2.imread(path) # BGR
672
- assert img is not None, 'Image Not Found ' + path
673
- h0, w0 = img.shape[:2] # orig hw
674
- r = self.img_size / max(h0, w0) # resize image to img_size
675
- if r != 1: # always resize down, only resize up if training with augmentation
676
- interp = cv2.INTER_AREA if r < 1 and not self.augment else cv2.INTER_LINEAR
677
- img = cv2.resize(img, (int(w0 * r), int(h0 * r)), interpolation=interp)
678
- return img, (h0, w0), img.shape[:2] # img, hw_original, hw_resized
679
- else:
680
- return self.imgs[index], self.img_hw0[index], self.img_hw[index] # img, hw_original, hw_resized
681
-
682
-
683
- def augment_hsv(img, hgain=0.5, sgain=0.5, vgain=0.5):
684
- r = np.random.uniform(-1, 1, 3) * [hgain, sgain, vgain] + 1 # random gains
685
- hue, sat, val = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2HSV))
686
- dtype = img.dtype # uint8
687
-
688
- x = np.arange(0, 256, dtype=np.int16)
689
- lut_hue = ((x * r[0]) % 180).astype(dtype)
690
- lut_sat = np.clip(x * r[1], 0, 255).astype(dtype)
691
- lut_val = np.clip(x * r[2], 0, 255).astype(dtype)
692
-
693
- img_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val))).astype(dtype)
694
- cv2.cvtColor(img_hsv, cv2.COLOR_HSV2BGR, dst=img) # no return needed
695
-
696
-
697
- def hist_equalize(img, clahe=True, bgr=False):
698
- # Equalize histogram on BGR image 'img' with img.shape(n,m,3) and range 0-255
699
- yuv = cv2.cvtColor(img, cv2.COLOR_BGR2YUV if bgr else cv2.COLOR_RGB2YUV)
700
- if clahe:
701
- c = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
702
- yuv[:, :, 0] = c.apply(yuv[:, :, 0])
703
- else:
704
- yuv[:, :, 0] = cv2.equalizeHist(yuv[:, :, 0]) # equalize Y channel histogram
705
- return cv2.cvtColor(yuv, cv2.COLOR_YUV2BGR if bgr else cv2.COLOR_YUV2RGB) # convert YUV image to RGB
706
-
707
-
708
- def load_mosaic(self, index):
709
- # loads images in a 4-mosaic
710
-
711
- labels4, segments4 = [], []
712
- s = self.img_size
713
- yc, xc = [int(random.uniform(-x, 2 * s + x)) for x in self.mosaic_border] # mosaic center x, y
714
- indices = [index] + random.choices(self.indices, k=3) # 3 additional image indices
715
- for i, index in enumerate(indices):
716
- # Load image
717
- img, _, (h, w) = load_image(self, index)
718
-
719
- # place img in img4
720
- if i == 0: # top left
721
- img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles
722
- x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc # xmin, ymin, xmax, ymax (large image)
723
- x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h # xmin, ymin, xmax, ymax (small image)
724
- elif i == 1: # top right
725
- x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc
726
- x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h
727
- elif i == 2: # bottom left
728
- x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h)
729
- x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h)
730
- elif i == 3: # bottom right
731
- x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h)
732
- x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h)
733
-
734
- img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax]
735
- padw = x1a - x1b
736
- padh = y1a - y1b
737
-
738
- # Labels
739
- labels, segments = self.labels[index].copy(), self.segments[index].copy()
740
- if labels.size:
741
- labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padw, padh) # normalized xywh to pixel xyxy format
742
- segments = [xyn2xy(x, w, h, padw, padh) for x in segments]
743
- labels4.append(labels)
744
- segments4.extend(segments)
745
-
746
- # Concat/clip labels
747
- labels4 = np.concatenate(labels4, 0)
748
- for x in (labels4[:, 1:], *segments4):
749
- np.clip(x, 0, 2 * s, out=x) # clip when using random_perspective()
750
- # img4, labels4 = replicate(img4, labels4) # replicate
751
-
752
- # Augment
753
- #img4, labels4, segments4 = remove_background(img4, labels4, segments4)
754
- #sample_segments(img4, labels4, segments4, probability=self.hyp['copy_paste'])
755
- img4, labels4, segments4 = copy_paste(img4, labels4, segments4, probability=self.hyp['copy_paste'])
756
- img4, labels4 = random_perspective(img4, labels4, segments4,
757
- degrees=self.hyp['degrees'],
758
- translate=self.hyp['translate'],
759
- scale=self.hyp['scale'],
760
- shear=self.hyp['shear'],
761
- perspective=self.hyp['perspective'],
762
- border=self.mosaic_border) # border to remove
763
-
764
- return img4, labels4
765
-
766
-
767
- def load_mosaic9(self, index):
768
- # loads images in a 9-mosaic
769
-
770
- labels9, segments9 = [], []
771
- s = self.img_size
772
- indices = [index] + random.choices(self.indices, k=8) # 8 additional image indices
773
- for i, index in enumerate(indices):
774
- # Load image
775
- img, _, (h, w) = load_image(self, index)
776
-
777
- # place img in img9
778
- if i == 0: # center
779
- img9 = np.full((s * 3, s * 3, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles
780
- h0, w0 = h, w
781
- c = s, s, s + w, s + h # xmin, ymin, xmax, ymax (base) coordinates
782
- elif i == 1: # top
783
- c = s, s - h, s + w, s
784
- elif i == 2: # top right
785
- c = s + wp, s - h, s + wp + w, s
786
- elif i == 3: # right
787
- c = s + w0, s, s + w0 + w, s + h
788
- elif i == 4: # bottom right
789
- c = s + w0, s + hp, s + w0 + w, s + hp + h
790
- elif i == 5: # bottom
791
- c = s + w0 - w, s + h0, s + w0, s + h0 + h
792
- elif i == 6: # bottom left
793
- c = s + w0 - wp - w, s + h0, s + w0 - wp, s + h0 + h
794
- elif i == 7: # left
795
- c = s - w, s + h0 - h, s, s + h0
796
- elif i == 8: # top left
797
- c = s - w, s + h0 - hp - h, s, s + h0 - hp
798
-
799
- padx, pady = c[:2]
800
- x1, y1, x2, y2 = [max(x, 0) for x in c] # allocate coords
801
-
802
- # Labels
803
- labels, segments = self.labels[index].copy(), self.segments[index].copy()
804
- if labels.size:
805
- labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padx, pady) # normalized xywh to pixel xyxy format
806
- segments = [xyn2xy(x, w, h, padx, pady) for x in segments]
807
- labels9.append(labels)
808
- segments9.extend(segments)
809
-
810
- # Image
811
- img9[y1:y2, x1:x2] = img[y1 - pady:, x1 - padx:] # img9[ymin:ymax, xmin:xmax]
812
- hp, wp = h, w # height, width previous
813
-
814
- # Offset
815
- yc, xc = [int(random.uniform(0, s)) for _ in self.mosaic_border] # mosaic center x, y
816
- img9 = img9[yc:yc + 2 * s, xc:xc + 2 * s]
817
-
818
- # Concat/clip labels
819
- labels9 = np.concatenate(labels9, 0)
820
- labels9[:, [1, 3]] -= xc
821
- labels9[:, [2, 4]] -= yc
822
- c = np.array([xc, yc]) # centers
823
- segments9 = [x - c for x in segments9]
824
-
825
- for x in (labels9[:, 1:], *segments9):
826
- np.clip(x, 0, 2 * s, out=x) # clip when using random_perspective()
827
- # img9, labels9 = replicate(img9, labels9) # replicate
828
-
829
- # Augment
830
- #img9, labels9, segments9 = remove_background(img9, labels9, segments9)
831
- img9, labels9, segments9 = copy_paste(img9, labels9, segments9, probability=self.hyp['copy_paste'])
832
- img9, labels9 = random_perspective(img9, labels9, segments9,
833
- degrees=self.hyp['degrees'],
834
- translate=self.hyp['translate'],
835
- scale=self.hyp['scale'],
836
- shear=self.hyp['shear'],
837
- perspective=self.hyp['perspective'],
838
- border=self.mosaic_border) # border to remove
839
-
840
- return img9, labels9
841
-
842
-
843
- def load_samples(self, index):
844
- # loads images in a 4-mosaic
845
-
846
- labels4, segments4 = [], []
847
- s = self.img_size
848
- yc, xc = [int(random.uniform(-x, 2 * s + x)) for x in self.mosaic_border] # mosaic center x, y
849
- indices = [index] + random.choices(self.indices, k=3) # 3 additional image indices
850
- for i, index in enumerate(indices):
851
- # Load image
852
- img, _, (h, w) = load_image(self, index)
853
-
854
- # place img in img4
855
- if i == 0: # top left
856
- img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles
857
- x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc # xmin, ymin, xmax, ymax (large image)
858
- x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h # xmin, ymin, xmax, ymax (small image)
859
- elif i == 1: # top right
860
- x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc
861
- x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h
862
- elif i == 2: # bottom left
863
- x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h)
864
- x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h)
865
- elif i == 3: # bottom right
866
- x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h)
867
- x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h)
868
-
869
- img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax]
870
- padw = x1a - x1b
871
- padh = y1a - y1b
872
-
873
- # Labels
874
- labels, segments = self.labels[index].copy(), self.segments[index].copy()
875
- if labels.size:
876
- labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padw, padh) # normalized xywh to pixel xyxy format
877
- segments = [xyn2xy(x, w, h, padw, padh) for x in segments]
878
- labels4.append(labels)
879
- segments4.extend(segments)
880
-
881
- # Concat/clip labels
882
- labels4 = np.concatenate(labels4, 0)
883
- for x in (labels4[:, 1:], *segments4):
884
- np.clip(x, 0, 2 * s, out=x) # clip when using random_perspective()
885
- # img4, labels4 = replicate(img4, labels4) # replicate
886
-
887
- # Augment
888
- #img4, labels4, segments4 = remove_background(img4, labels4, segments4)
889
- sample_labels, sample_images, sample_masks = sample_segments(img4, labels4, segments4, probability=0.5)
890
-
891
- return sample_labels, sample_images, sample_masks
892
-
893
-
894
- def copy_paste(img, labels, segments, probability=0.5):
895
- # Implement Copy-Paste augmentation https://arxiv.org/abs/2012.07177, labels as nx5 np.array(cls, xyxy)
896
- n = len(segments)
897
- if probability and n:
898
- h, w, c = img.shape # height, width, channels
899
- im_new = np.zeros(img.shape, np.uint8)
900
- for j in random.sample(range(n), k=round(probability * n)):
901
- l, s = labels[j], segments[j]
902
- box = w - l[3], l[2], w - l[1], l[4]
903
- ioa = bbox_ioa(box, labels[:, 1:5]) # intersection over area
904
- if (ioa < 0.30).all(): # allow 30% obscuration of existing labels
905
- labels = np.concatenate((labels, [[l[0], *box]]), 0)
906
- segments.append(np.concatenate((w - s[:, 0:1], s[:, 1:2]), 1))
907
- cv2.drawContours(im_new, [segments[j].astype(np.int32)], -1, (255, 255, 255), cv2.FILLED)
908
-
909
- result = cv2.bitwise_and(src1=img, src2=im_new)
910
- result = cv2.flip(result, 1) # augment segments (flip left-right)
911
- i = result > 0 # pixels to replace
912
- # i[:, :] = result.max(2).reshape(h, w, 1) # act over ch
913
- img[i] = result[i] # cv2.imwrite('debug.jpg', img) # debug
914
-
915
- return img, labels, segments
916
-
917
-
918
- def remove_background(img, labels, segments):
919
- # Implement Copy-Paste augmentation https://arxiv.org/abs/2012.07177, labels as nx5 np.array(cls, xyxy)
920
- n = len(segments)
921
- h, w, c = img.shape # height, width, channels
922
- im_new = np.zeros(img.shape, np.uint8)
923
- img_new = np.ones(img.shape, np.uint8) * 114
924
- for j in range(n):
925
- cv2.drawContours(im_new, [segments[j].astype(np.int32)], -1, (255, 255, 255), cv2.FILLED)
926
-
927
- result = cv2.bitwise_and(src1=img, src2=im_new)
928
-
929
- i = result > 0 # pixels to replace
930
- img_new[i] = result[i] # cv2.imwrite('debug.jpg', img) # debug
931
-
932
- return img_new, labels, segments
933
-
934
-
935
- def sample_segments(img, labels, segments, probability=0.5):
936
- # Implement Copy-Paste augmentation https://arxiv.org/abs/2012.07177, labels as nx5 np.array(cls, xyxy)
937
- n = len(segments)
938
- sample_labels = []
939
- sample_images = []
940
- sample_masks = []
941
- if probability and n:
942
- h, w, c = img.shape # height, width, channels
943
- for j in random.sample(range(n), k=round(probability * n)):
944
- l, s = labels[j], segments[j]
945
- box = l[1].astype(int).clip(0,w-1), l[2].astype(int).clip(0,h-1), l[3].astype(int).clip(0,w-1), l[4].astype(int).clip(0,h-1)
946
-
947
- #print(box)
948
- if (box[2] <= box[0]) or (box[3] <= box[1]):
949
- continue
950
-
951
- sample_labels.append(l[0])
952
-
953
- mask = np.zeros(img.shape, np.uint8)
954
-
955
- cv2.drawContours(mask, [segments[j].astype(np.int32)], -1, (255, 255, 255), cv2.FILLED)
956
- sample_masks.append(mask[box[1]:box[3],box[0]:box[2],:])
957
-
958
- result = cv2.bitwise_and(src1=img, src2=mask)
959
- i = result > 0 # pixels to replace
960
- mask[i] = result[i] # cv2.imwrite('debug.jpg', img) # debug
961
- #print(box)
962
- sample_images.append(mask[box[1]:box[3],box[0]:box[2],:])
963
-
964
- return sample_labels, sample_images, sample_masks
965
-
966
-
967
- def replicate(img, labels):
968
- # Replicate labels
969
- h, w = img.shape[:2]
970
- boxes = labels[:, 1:].astype(int)
971
- x1, y1, x2, y2 = boxes.T
972
- s = ((x2 - x1) + (y2 - y1)) / 2 # side length (pixels)
973
- for i in s.argsort()[:round(s.size * 0.5)]: # smallest indices
974
- x1b, y1b, x2b, y2b = boxes[i]
975
- bh, bw = y2b - y1b, x2b - x1b
976
- yc, xc = int(random.uniform(0, h - bh)), int(random.uniform(0, w - bw)) # offset x, y
977
- x1a, y1a, x2a, y2a = [xc, yc, xc + bw, yc + bh]
978
- img[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax]
979
- labels = np.append(labels, [[labels[i, 0], x1a, y1a, x2a, y2a]], axis=0)
980
-
981
- return img, labels
982
-
983
-
984
- def letterbox(img, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True, stride=32):
985
- # Resize and pad image while meeting stride-multiple constraints
986
- shape = img.shape[:2] # current shape [height, width]
987
- if isinstance(new_shape, int):
988
- new_shape = (new_shape, new_shape)
989
-
990
- # Scale ratio (new / old)
991
- r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
992
- if not scaleup: # only scale down, do not scale up (for better test mAP)
993
- r = min(r, 1.0)
994
-
995
- # Compute padding
996
- ratio = r, r # width, height ratios
997
- new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
998
- dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
999
- if auto: # minimum rectangle
1000
- dw, dh = np.mod(dw, stride), np.mod(dh, stride) # wh padding
1001
- elif scaleFill: # stretch
1002
- dw, dh = 0.0, 0.0
1003
- new_unpad = (new_shape[1], new_shape[0])
1004
- ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios
1005
-
1006
- dw /= 2 # divide padding into 2 sides
1007
- dh /= 2
1008
-
1009
- if shape[::-1] != new_unpad: # resize
1010
- img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
1011
- top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
1012
- left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
1013
- img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border
1014
- return img, ratio, (dw, dh)
1015
-
1016
-
1017
- def random_perspective(img, targets=(), segments=(), degrees=10, translate=.1, scale=.1, shear=10, perspective=0.0,
1018
- border=(0, 0)):
1019
- # torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(.1, .1), scale=(.9, 1.1), shear=(-10, 10))
1020
- # targets = [cls, xyxy]
1021
-
1022
- height = img.shape[0] + border[0] * 2 # shape(h,w,c)
1023
- width = img.shape[1] + border[1] * 2
1024
-
1025
- # Center
1026
- C = np.eye(3)
1027
- C[0, 2] = -img.shape[1] / 2 # x translation (pixels)
1028
- C[1, 2] = -img.shape[0] / 2 # y translation (pixels)
1029
-
1030
- # Perspective
1031
- P = np.eye(3)
1032
- P[2, 0] = random.uniform(-perspective, perspective) # x perspective (about y)
1033
- P[2, 1] = random.uniform(-perspective, perspective) # y perspective (about x)
1034
-
1035
- # Rotation and Scale
1036
- R = np.eye(3)
1037
- a = random.uniform(-degrees, degrees)
1038
- # a += random.choice([-180, -90, 0, 90]) # add 90deg rotations to small rotations
1039
- s = random.uniform(1 - scale, 1.1 + scale)
1040
- # s = 2 ** random.uniform(-scale, scale)
1041
- R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s)
1042
-
1043
- # Shear
1044
- S = np.eye(3)
1045
- S[0, 1] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # x shear (deg)
1046
- S[1, 0] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # y shear (deg)
1047
-
1048
- # Translation
1049
- T = np.eye(3)
1050
- T[0, 2] = random.uniform(0.5 - translate, 0.5 + translate) * width # x translation (pixels)
1051
- T[1, 2] = random.uniform(0.5 - translate, 0.5 + translate) * height # y translation (pixels)
1052
-
1053
- # Combined rotation matrix
1054
- M = T @ S @ R @ P @ C # order of operations (right to left) is IMPORTANT
1055
- if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any(): # image changed
1056
- if perspective:
1057
- img = cv2.warpPerspective(img, M, dsize=(width, height), borderValue=(114, 114, 114))
1058
- else: # affine
1059
- img = cv2.warpAffine(img, M[:2], dsize=(width, height), borderValue=(114, 114, 114))
1060
-
1061
- # Visualize
1062
- # import matplotlib.pyplot as plt
1063
- # ax = plt.subplots(1, 2, figsize=(12, 6))[1].ravel()
1064
- # ax[0].imshow(img[:, :, ::-1]) # base
1065
- # ax[1].imshow(img2[:, :, ::-1]) # warped
1066
-
1067
- # Transform label coordinates
1068
- n = len(targets)
1069
- if n:
1070
- use_segments = any(x.any() for x in segments)
1071
- new = np.zeros((n, 4))
1072
- if use_segments: # warp segments
1073
- segments = resample_segments(segments) # upsample
1074
- for i, segment in enumerate(segments):
1075
- xy = np.ones((len(segment), 3))
1076
- xy[:, :2] = segment
1077
- xy = xy @ M.T # transform
1078
- xy = xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2] # perspective rescale or affine
1079
-
1080
- # clip
1081
- new[i] = segment2box(xy, width, height)
1082
-
1083
- else: # warp boxes
1084
- xy = np.ones((n * 4, 3))
1085
- xy[:, :2] = targets[:, [1, 2, 3, 4, 1, 4, 3, 2]].reshape(n * 4, 2) # x1y1, x2y2, x1y2, x2y1
1086
- xy = xy @ M.T # transform
1087
- xy = (xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2]).reshape(n, 8) # perspective rescale or affine
1088
-
1089
- # create new boxes
1090
- x = xy[:, [0, 2, 4, 6]]
1091
- y = xy[:, [1, 3, 5, 7]]
1092
- new = np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T
1093
-
1094
- # clip
1095
- new[:, [0, 2]] = new[:, [0, 2]].clip(0, width)
1096
- new[:, [1, 3]] = new[:, [1, 3]].clip(0, height)
1097
-
1098
- # filter candidates
1099
- i = box_candidates(box1=targets[:, 1:5].T * s, box2=new.T, area_thr=0.01 if use_segments else 0.10)
1100
- targets = targets[i]
1101
- targets[:, 1:5] = new[i]
1102
-
1103
- return img, targets
1104
-
1105
-
1106
- def box_candidates(box1, box2, wh_thr=2, ar_thr=20, area_thr=0.1, eps=1e-16): # box1(4,n), box2(4,n)
1107
- # Compute candidate boxes: box1 before augment, box2 after augment, wh_thr (pixels), aspect_ratio_thr, area_ratio
1108
- w1, h1 = box1[2] - box1[0], box1[3] - box1[1]
1109
- w2, h2 = box2[2] - box2[0], box2[3] - box2[1]
1110
- ar = np.maximum(w2 / (h2 + eps), h2 / (w2 + eps)) # aspect ratio
1111
- return (w2 > wh_thr) & (h2 > wh_thr) & (w2 * h2 / (w1 * h1 + eps) > area_thr) & (ar < ar_thr) # candidates
1112
-
1113
-
1114
- def bbox_ioa(box1, box2):
1115
- # Returns the intersection over box2 area given box1, box2. box1 is 4, box2 is nx4. boxes are x1y1x2y2
1116
- box2 = box2.transpose()
1117
-
1118
- # Get the coordinates of bounding boxes
1119
- b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
1120
- b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
1121
-
1122
- # Intersection area
1123
- inter_area = (np.minimum(b1_x2, b2_x2) - np.maximum(b1_x1, b2_x1)).clip(0) * \
1124
- (np.minimum(b1_y2, b2_y2) - np.maximum(b1_y1, b2_y1)).clip(0)
1125
-
1126
- # box2 area
1127
- box2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1) + 1e-16
1128
-
1129
- # Intersection over box2 area
1130
- return inter_area / box2_area
1131
-
1132
-
1133
- def cutout(image, labels):
1134
- # Applies image cutout augmentation https://arxiv.org/abs/1708.04552
1135
- h, w = image.shape[:2]
1136
-
1137
- # create random masks
1138
- scales = [0.5] * 1 + [0.25] * 2 + [0.125] * 4 + [0.0625] * 8 + [0.03125] * 16 # image size fraction
1139
- for s in scales:
1140
- mask_h = random.randint(1, int(h * s))
1141
- mask_w = random.randint(1, int(w * s))
1142
-
1143
- # box
1144
- xmin = max(0, random.randint(0, w) - mask_w // 2)
1145
- ymin = max(0, random.randint(0, h) - mask_h // 2)
1146
- xmax = min(w, xmin + mask_w)
1147
- ymax = min(h, ymin + mask_h)
1148
-
1149
- # apply random color mask
1150
- image[ymin:ymax, xmin:xmax] = [random.randint(64, 191) for _ in range(3)]
1151
-
1152
- # return unobscured labels
1153
- if len(labels) and s > 0.03:
1154
- box = np.array([xmin, ymin, xmax, ymax], dtype=np.float32)
1155
- ioa = bbox_ioa(box, labels[:, 1:5]) # intersection over area
1156
- labels = labels[ioa < 0.60] # remove >60% obscured labels
1157
-
1158
- return labels
1159
-
1160
-
1161
- def pastein(image, labels, sample_labels, sample_images, sample_masks):
1162
- # Applies image cutout augmentation https://arxiv.org/abs/1708.04552
1163
- h, w = image.shape[:2]
1164
-
1165
- # create random masks
1166
- scales = [0.75] * 2 + [0.5] * 4 + [0.25] * 4 + [0.125] * 4 + [0.0625] * 6 # image size fraction
1167
- for s in scales:
1168
- if random.random() < 0.2:
1169
- continue
1170
- mask_h = random.randint(1, int(h * s))
1171
- mask_w = random.randint(1, int(w * s))
1172
-
1173
- # box
1174
- xmin = max(0, random.randint(0, w) - mask_w // 2)
1175
- ymin = max(0, random.randint(0, h) - mask_h // 2)
1176
- xmax = min(w, xmin + mask_w)
1177
- ymax = min(h, ymin + mask_h)
1178
-
1179
- box = np.array([xmin, ymin, xmax, ymax], dtype=np.float32)
1180
- if len(labels):
1181
- ioa = bbox_ioa(box, labels[:, 1:5]) # intersection over area
1182
- else:
1183
- ioa = np.zeros(1)
1184
-
1185
- if (ioa < 0.30).all() and len(sample_labels) and (xmax > xmin+20) and (ymax > ymin+20): # allow 30% obscuration of existing labels
1186
- sel_ind = random.randint(0, len(sample_labels)-1)
1187
- #print(len(sample_labels))
1188
- #print(sel_ind)
1189
- #print((xmax-xmin, ymax-ymin))
1190
- #print(image[ymin:ymax, xmin:xmax].shape)
1191
- #print([[sample_labels[sel_ind], *box]])
1192
- #print(labels.shape)
1193
- hs, ws, cs = sample_images[sel_ind].shape
1194
- r_scale = min((ymax-ymin)/hs, (xmax-xmin)/ws)
1195
- r_w = int(ws*r_scale)
1196
- r_h = int(hs*r_scale)
1197
-
1198
- if (r_w > 10) and (r_h > 10):
1199
- r_mask = cv2.resize(sample_masks[sel_ind], (r_w, r_h))
1200
- r_image = cv2.resize(sample_images[sel_ind], (r_w, r_h))
1201
- temp_crop = image[ymin:ymin+r_h, xmin:xmin+r_w]
1202
- m_ind = r_mask > 0
1203
- if m_ind.astype(np.int32).sum() > 60:
1204
- temp_crop[m_ind] = r_image[m_ind]
1205
- #print(sample_labels[sel_ind])
1206
- #print(sample_images[sel_ind].shape)
1207
- #print(temp_crop.shape)
1208
- box = np.array([xmin, ymin, xmin+r_w, ymin+r_h], dtype=np.float32)
1209
- if len(labels):
1210
- labels = np.concatenate((labels, [[sample_labels[sel_ind], *box]]), 0)
1211
- else:
1212
- labels = np.array([[sample_labels[sel_ind], *box]])
1213
-
1214
- image[ymin:ymin+r_h, xmin:xmin+r_w] = temp_crop
1215
-
1216
- return labels
1217
-
1218
- class Albumentations:
1219
- # YOLOv5 Albumentations class (optional, only used if package is installed)
1220
- def __init__(self):
1221
- self.transform = None
1222
- import albumentations as A
1223
-
1224
- self.transform = A.Compose([
1225
- A.CLAHE(p=0.01),
1226
- A.RandomBrightnessContrast(brightness_limit=0.2, contrast_limit=0.2, p=0.01),
1227
- A.RandomGamma(gamma_limit=[80, 120], p=0.01),
1228
- A.Blur(p=0.01),
1229
- A.MedianBlur(p=0.01),
1230
- A.ToGray(p=0.01),
1231
- A.ImageCompression(quality_lower=75, p=0.01),],
1232
- bbox_params=A.BboxParams(format='pascal_voc', label_fields=['class_labels']))
1233
-
1234
- #logging.info(colorstr('albumentations: ') + ', '.join(f'{x}' for x in self.transform.transforms if x.p))
1235
-
1236
- def __call__(self, im, labels, p=1.0):
1237
- if self.transform and random.random() < p:
1238
- new = self.transform(image=im, bboxes=labels[:, 1:], class_labels=labels[:, 0]) # transformed
1239
- im, labels = new['image'], np.array([[c, *b] for c, b in zip(new['class_labels'], new['bboxes'])])
1240
- return im, labels
1241
-
1242
-
1243
- def create_folder(path='./new'):
1244
- # Create folder
1245
- if os.path.exists(path):
1246
- shutil.rmtree(path) # delete output folder
1247
- os.makedirs(path) # make new output folder
1248
-
1249
-
1250
- def flatten_recursive(path='../coco'):
1251
- # Flatten a recursive directory by bringing all files to top level
1252
- new_path = Path(path + '_flat')
1253
- create_folder(new_path)
1254
- for file in tqdm(glob.glob(str(Path(path)) + '/**/*.*', recursive=True)):
1255
- shutil.copyfile(file, new_path / Path(file).name)
1256
-
1257
-
1258
- def extract_boxes(path='../coco/'): # from utils.datasets import *; extract_boxes('../coco128')
1259
- # Convert detection dataset into classification dataset, with one directory per class
1260
-
1261
- path = Path(path) # images dir
1262
- shutil.rmtree(path / 'classifier') if (path / 'classifier').is_dir() else None # remove existing
1263
- files = list(path.rglob('*.*'))
1264
- n = len(files) # number of files
1265
- for im_file in tqdm(files, total=n):
1266
- if im_file.suffix[1:] in img_formats:
1267
- # image
1268
- im = cv2.imread(str(im_file))[..., ::-1] # BGR to RGB
1269
- h, w = im.shape[:2]
1270
-
1271
- # labels
1272
- lb_file = Path(img2label_paths([str(im_file)])[0])
1273
- if Path(lb_file).exists():
1274
- with open(lb_file, 'r') as f:
1275
- lb = np.array([x.split() for x in f.read().strip().splitlines()], dtype=np.float32) # labels
1276
-
1277
- for j, x in enumerate(lb):
1278
- c = int(x[0]) # class
1279
- f = (path / 'classifier') / f'{c}' / f'{path.stem}_{im_file.stem}_{j}.jpg' # new filename
1280
- if not f.parent.is_dir():
1281
- f.parent.mkdir(parents=True)
1282
-
1283
- b = x[1:] * [w, h, w, h] # box
1284
- # b[2:] = b[2:].max() # rectangle to square
1285
- b[2:] = b[2:] * 1.2 + 3 # pad
1286
- b = xywh2xyxy(b.reshape(-1, 4)).ravel().astype(np.int)
1287
-
1288
- b[[0, 2]] = np.clip(b[[0, 2]], 0, w) # clip boxes outside of image
1289
- b[[1, 3]] = np.clip(b[[1, 3]], 0, h)
1290
- assert cv2.imwrite(str(f), im[b[1]:b[3], b[0]:b[2]]), f'box failure in {f}'
1291
-
1292
-
1293
- def autosplit(path='../coco', weights=(0.9, 0.1, 0.0), annotated_only=False):
1294
- """ Autosplit a dataset into train/val/test splits and save path/autosplit_*.txt files
1295
- Usage: from utils.datasets import *; autosplit('../coco')
1296
- Arguments
1297
- path: Path to images directory
1298
- weights: Train, val, test weights (list)
1299
- annotated_only: Only use images with an annotated txt file
1300
- """
1301
- path = Path(path) # images dir
1302
- files = sum([list(path.rglob(f"*.{img_ext}")) for img_ext in img_formats], []) # image files only
1303
- n = len(files) # number of files
1304
- indices = random.choices([0, 1, 2], weights=weights, k=n) # assign each image to a split
1305
-
1306
- txt = ['autosplit_train.txt', 'autosplit_val.txt', 'autosplit_test.txt'] # 3 txt files
1307
- [(path / x).unlink() for x in txt if (path / x).exists()] # remove existing
1308
-
1309
- print(f'Autosplitting images from {path}' + ', using *.txt labeled images only' * annotated_only)
1310
- for i, img in tqdm(zip(indices, files), total=n):
1311
- if not annotated_only or Path(img2label_paths([str(img)])[0]).exists(): # check label
1312
- with open(path / txt[i], 'a') as f:
1313
- f.write(str(img) + '\n') # add image to txt file
1314
-
1315
-
1316
- def load_segmentations(self, index):
1317
- key = '/work/handsomejw66/coco17/' + self.img_files[index]
1318
- #print(key)
1319
- # /work/handsomejw66/coco17/
1320
- return self.segs[key]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
utils/general.py DELETED
@@ -1,892 +0,0 @@
1
- # YOLOR general utils
2
-
3
- import glob
4
- import logging
5
- import math
6
- import os
7
- import platform
8
- import random
9
- import re
10
- import subprocess
11
- import time
12
- from pathlib import Path
13
-
14
- import cv2
15
- import numpy as np
16
- import pandas as pd
17
- import torch
18
- import torchvision
19
- import yaml
20
-
21
- from utils.google_utils import gsutil_getsize
22
- from utils.metrics import fitness
23
- from utils.torch_utils import init_torch_seeds
24
-
25
- # Settings
26
- torch.set_printoptions(linewidth=320, precision=5, profile='long')
27
- np.set_printoptions(linewidth=320, formatter={'float_kind': '{:11.5g}'.format}) # format short g, %precision=5
28
- pd.options.display.max_columns = 10
29
- cv2.setNumThreads(0) # prevent OpenCV from multithreading (incompatible with PyTorch DataLoader)
30
- os.environ['NUMEXPR_MAX_THREADS'] = str(min(os.cpu_count(), 8)) # NumExpr max threads
31
-
32
-
33
- def set_logging(rank=-1):
34
- logging.basicConfig(
35
- format="%(message)s",
36
- level=logging.INFO if rank in [-1, 0] else logging.WARN)
37
-
38
-
39
- def init_seeds(seed=0):
40
- # Initialize random number generator (RNG) seeds
41
- random.seed(seed)
42
- np.random.seed(seed)
43
- init_torch_seeds(seed)
44
-
45
-
46
- def get_latest_run(search_dir='.'):
47
- # Return path to most recent 'last.pt' in /runs (i.e. to --resume from)
48
- last_list = glob.glob(f'{search_dir}/**/last*.pt', recursive=True)
49
- return max(last_list, key=os.path.getctime) if last_list else ''
50
-
51
-
52
- def isdocker():
53
- # Is environment a Docker container
54
- return Path('/workspace').exists() # or Path('/.dockerenv').exists()
55
-
56
-
57
- def emojis(str=''):
58
- # Return platform-dependent emoji-safe version of string
59
- return str.encode().decode('ascii', 'ignore') if platform.system() == 'Windows' else str
60
-
61
-
62
- def check_online():
63
- # Check internet connectivity
64
- import socket
65
- try:
66
- socket.create_connection(("1.1.1.1", 443), 5) # check host accesability
67
- return True
68
- except OSError:
69
- return False
70
-
71
-
72
- def check_git_status():
73
- # Recommend 'git pull' if code is out of date
74
- print(colorstr('github: '), end='')
75
- try:
76
- assert Path('.git').exists(), 'skipping check (not a git repository)'
77
- assert not isdocker(), 'skipping check (Docker image)'
78
- assert check_online(), 'skipping check (offline)'
79
-
80
- cmd = 'git fetch && git config --get remote.origin.url'
81
- url = subprocess.check_output(cmd, shell=True).decode().strip().rstrip('.git') # github repo url
82
- branch = subprocess.check_output('git rev-parse --abbrev-ref HEAD', shell=True).decode().strip() # checked out
83
- n = int(subprocess.check_output(f'git rev-list {branch}..origin/master --count', shell=True)) # commits behind
84
- if n > 0:
85
- s = f"⚠️ WARNING: code is out of date by {n} commit{'s' * (n > 1)}. " \
86
- f"Use 'git pull' to update or 'git clone {url}' to download latest."
87
- else:
88
- s = f'up to date with {url} ✅'
89
- print(emojis(s)) # emoji-safe
90
- except Exception as e:
91
- print(e)
92
-
93
-
94
- def check_requirements(requirements='requirements.txt', exclude=()):
95
- # Check installed dependencies meet requirements (pass *.txt file or list of packages)
96
- import pkg_resources as pkg
97
- prefix = colorstr('red', 'bold', 'requirements:')
98
- if isinstance(requirements, (str, Path)): # requirements.txt file
99
- file = Path(requirements)
100
- if not file.exists():
101
- print(f"{prefix} {file.resolve()} not found, check failed.")
102
- return
103
- requirements = [f'{x.name}{x.specifier}' for x in pkg.parse_requirements(file.open()) if x.name not in exclude]
104
- else: # list or tuple of packages
105
- requirements = [x for x in requirements if x not in exclude]
106
-
107
- n = 0 # number of packages updates
108
- for r in requirements:
109
- try:
110
- pkg.require(r)
111
- except Exception as e: # DistributionNotFound or VersionConflict if requirements not met
112
- n += 1
113
- print(f"{prefix} {e.req} not found and is required by YOLOR, attempting auto-update...")
114
- print(subprocess.check_output(f"pip install '{e.req}'", shell=True).decode())
115
-
116
- if n: # if packages updated
117
- source = file.resolve() if 'file' in locals() else requirements
118
- s = f"{prefix} {n} package{'s' * (n > 1)} updated per {source}\n" \
119
- f"{prefix} ⚠️ {colorstr('bold', 'Restart runtime or rerun command for updates to take effect')}\n"
120
- print(emojis(s)) # emoji-safe
121
-
122
-
123
- def check_img_size(img_size, s=32):
124
- # Verify img_size is a multiple of stride s
125
- new_size = make_divisible(img_size, int(s)) # ceil gs-multiple
126
- if new_size != img_size:
127
- print('WARNING: --img-size %g must be multiple of max stride %g, updating to %g' % (img_size, s, new_size))
128
- return new_size
129
-
130
-
131
- def check_imshow():
132
- # Check if environment supports image displays
133
- try:
134
- assert not isdocker(), 'cv2.imshow() is disabled in Docker environments'
135
- cv2.imshow('test', np.zeros((1, 1, 3)))
136
- cv2.waitKey(1)
137
- cv2.destroyAllWindows()
138
- cv2.waitKey(1)
139
- return True
140
- except Exception as e:
141
- print(f'WARNING: Environment does not support cv2.imshow() or PIL Image.show() image displays\n{e}')
142
- return False
143
-
144
-
145
- def check_file(file):
146
- # Search for file if not found
147
- if Path(file).is_file() or file == '':
148
- return file
149
- else:
150
- files = glob.glob('./**/' + file, recursive=True) # find file
151
- assert len(files), f'File Not Found: {file}' # assert file was found
152
- assert len(files) == 1, f"Multiple files match '{file}', specify exact path: {files}" # assert unique
153
- return files[0] # return file
154
-
155
-
156
- def check_dataset(dict):
157
- # Download dataset if not found locally
158
- val, s = dict.get('val'), dict.get('download')
159
- if val and len(val):
160
- val = [Path(x).resolve() for x in (val if isinstance(val, list) else [val])] # val path
161
- if not all(x.exists() for x in val):
162
- print('\nWARNING: Dataset not found, nonexistent paths: %s' % [str(x) for x in val if not x.exists()])
163
- if s and len(s): # download script
164
- print('Downloading %s ...' % s)
165
- if s.startswith('http') and s.endswith('.zip'): # URL
166
- f = Path(s).name # filename
167
- torch.hub.download_url_to_file(s, f)
168
- r = os.system('unzip -q %s -d ../ && rm %s' % (f, f)) # unzip
169
- else: # bash script
170
- r = os.system(s)
171
- print('Dataset autodownload %s\n' % ('success' if r == 0 else 'failure')) # analyze return value
172
- else:
173
- raise Exception('Dataset not found.')
174
-
175
-
176
- def make_divisible(x, divisor):
177
- # Returns x evenly divisible by divisor
178
- return math.ceil(x / divisor) * divisor
179
-
180
-
181
- def clean_str(s):
182
- # Cleans a string by replacing special characters with underscore _
183
- return re.sub(pattern="[|@#!¡·$€%&()=?¿^*;:,¨´><+]", repl="_", string=s)
184
-
185
-
186
- def one_cycle(y1=0.0, y2=1.0, steps=100):
187
- # lambda function for sinusoidal ramp from y1 to y2
188
- return lambda x: ((1 - math.cos(x * math.pi / steps)) / 2) * (y2 - y1) + y1
189
-
190
-
191
- def colorstr(*input):
192
- # Colors a string https://en.wikipedia.org/wiki/ANSI_escape_code, i.e. colorstr('blue', 'hello world')
193
- *args, string = input if len(input) > 1 else ('blue', 'bold', input[0]) # color arguments, string
194
- colors = {'black': '\033[30m', # basic colors
195
- 'red': '\033[31m',
196
- 'green': '\033[32m',
197
- 'yellow': '\033[33m',
198
- 'blue': '\033[34m',
199
- 'magenta': '\033[35m',
200
- 'cyan': '\033[36m',
201
- 'white': '\033[37m',
202
- 'bright_black': '\033[90m', # bright colors
203
- 'bright_red': '\033[91m',
204
- 'bright_green': '\033[92m',
205
- 'bright_yellow': '\033[93m',
206
- 'bright_blue': '\033[94m',
207
- 'bright_magenta': '\033[95m',
208
- 'bright_cyan': '\033[96m',
209
- 'bright_white': '\033[97m',
210
- 'end': '\033[0m', # misc
211
- 'bold': '\033[1m',
212
- 'underline': '\033[4m'}
213
- return ''.join(colors[x] for x in args) + f'{string}' + colors['end']
214
-
215
-
216
- def labels_to_class_weights(labels, nc=80):
217
- # Get class weights (inverse frequency) from training labels
218
- if labels[0] is None: # no labels loaded
219
- return torch.Tensor()
220
-
221
- labels = np.concatenate(labels, 0) # labels.shape = (866643, 5) for COCO
222
- classes = labels[:, 0].astype(np.int32) # labels = [class xywh]
223
- weights = np.bincount(classes, minlength=nc) # occurrences per class
224
-
225
- # Prepend gridpoint count (for uCE training)
226
- # gpi = ((320 / 32 * np.array([1, 2, 4])) ** 2 * 3).sum() # gridpoints per image
227
- # weights = np.hstack([gpi * len(labels) - weights.sum() * 9, weights * 9]) ** 0.5 # prepend gridpoints to start
228
-
229
- weights[weights == 0] = 1 # replace empty bins with 1
230
- weights = 1 / weights # number of targets per class
231
- weights /= weights.sum() # normalize
232
- return torch.from_numpy(weights)
233
-
234
-
235
- def labels_to_image_weights(labels, nc=80, class_weights=np.ones(80)):
236
- # Produces image weights based on class_weights and image contents
237
- class_counts = np.array([np.bincount(x[:, 0].astype(np.int32), minlength=nc) for x in labels])
238
- image_weights = (class_weights.reshape(1, nc) * class_counts).sum(1)
239
- # index = random.choices(range(n), weights=image_weights, k=1) # weight image sample
240
- return image_weights
241
-
242
-
243
- def coco80_to_coco91_class(): # converts 80-index (val2014) to 91-index (paper)
244
- # https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/
245
- # a = np.loadtxt('data/coco.names', dtype='str', delimiter='\n')
246
- # b = np.loadtxt('data/coco_paper.names', dtype='str', delimiter='\n')
247
- # x1 = [list(a[i] == b).index(True) + 1 for i in range(80)] # darknet to coco
248
- # x2 = [list(b[i] == a).index(True) if any(b[i] == a) else None for i in range(91)] # coco to darknet
249
- x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 32, 33, 34,
250
- 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
251
- 64, 65, 67, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90]
252
- return x
253
-
254
-
255
- def xyxy2xywh(x):
256
- # Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] where xy1=top-left, xy2=bottom-right
257
- y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
258
- y[:, 0] = (x[:, 0] + x[:, 2]) / 2 # x center
259
- y[:, 1] = (x[:, 1] + x[:, 3]) / 2 # y center
260
- y[:, 2] = x[:, 2] - x[:, 0] # width
261
- y[:, 3] = x[:, 3] - x[:, 1] # height
262
- return y
263
-
264
-
265
- def xywh2xyxy(x):
266
- # Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
267
- y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
268
- y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x
269
- y[:, 1] = x[:, 1] - x[:, 3] / 2 # top left y
270
- y[:, 2] = x[:, 0] + x[:, 2] / 2 # bottom right x
271
- y[:, 3] = x[:, 1] + x[:, 3] / 2 # bottom right y
272
- return y
273
-
274
-
275
- def xywhn2xyxy(x, w=640, h=640, padw=0, padh=0):
276
- # Convert nx4 boxes from [x, y, w, h] normalized to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
277
- y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
278
- y[:, 0] = w * (x[:, 0] - x[:, 2] / 2) + padw # top left x
279
- y[:, 1] = h * (x[:, 1] - x[:, 3] / 2) + padh # top left y
280
- y[:, 2] = w * (x[:, 0] + x[:, 2] / 2) + padw # bottom right x
281
- y[:, 3] = h * (x[:, 1] + x[:, 3] / 2) + padh # bottom right y
282
- return y
283
-
284
-
285
- def xyn2xy(x, w=640, h=640, padw=0, padh=0):
286
- # Convert normalized segments into pixel segments, shape (n,2)
287
- y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
288
- y[:, 0] = w * x[:, 0] + padw # top left x
289
- y[:, 1] = h * x[:, 1] + padh # top left y
290
- return y
291
-
292
-
293
- def segment2box(segment, width=640, height=640):
294
- # Convert 1 segment label to 1 box label, applying inside-image constraint, i.e. (xy1, xy2, ...) to (xyxy)
295
- x, y = segment.T # segment xy
296
- inside = (x >= 0) & (y >= 0) & (x <= width) & (y <= height)
297
- x, y, = x[inside], y[inside]
298
- return np.array([x.min(), y.min(), x.max(), y.max()]) if any(x) else np.zeros((1, 4)) # xyxy
299
-
300
-
301
- def segments2boxes(segments):
302
- # Convert segment labels to box labels, i.e. (cls, xy1, xy2, ...) to (cls, xywh)
303
- boxes = []
304
- for s in segments:
305
- x, y = s.T # segment xy
306
- boxes.append([x.min(), y.min(), x.max(), y.max()]) # cls, xyxy
307
- return xyxy2xywh(np.array(boxes)) # cls, xywh
308
-
309
-
310
- def resample_segments(segments, n=1000):
311
- # Up-sample an (n,2) segment
312
- for i, s in enumerate(segments):
313
- s = np.concatenate((s, s[0:1, :]), axis=0)
314
- x = np.linspace(0, len(s) - 1, n)
315
- xp = np.arange(len(s))
316
- segments[i] = np.concatenate([np.interp(x, xp, s[:, i]) for i in range(2)]).reshape(2, -1).T # segment xy
317
- return segments
318
-
319
-
320
- def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None):
321
- # Rescale coords (xyxy) from img1_shape to img0_shape
322
- if ratio_pad is None: # calculate from img0_shape
323
- gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new
324
- pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding
325
- else:
326
- gain = ratio_pad[0][0]
327
- pad = ratio_pad[1]
328
-
329
- coords[:, [0, 2]] -= pad[0] # x padding
330
- coords[:, [1, 3]] -= pad[1] # y padding
331
- coords[:, :4] /= gain
332
- clip_coords(coords, img0_shape)
333
- return coords
334
-
335
-
336
- def clip_coords(boxes, img_shape):
337
- # Clip bounding xyxy bounding boxes to image shape (height, width)
338
- boxes[:, 0].clamp_(0, img_shape[1]) # x1
339
- boxes[:, 1].clamp_(0, img_shape[0]) # y1
340
- boxes[:, 2].clamp_(0, img_shape[1]) # x2
341
- boxes[:, 3].clamp_(0, img_shape[0]) # y2
342
-
343
-
344
- def bbox_iou(box1, box2, x1y1x2y2=True, GIoU=False, DIoU=False, CIoU=False, eps=1e-7):
345
- # Returns the IoU of box1 to box2. box1 is 4, box2 is nx4
346
- box2 = box2.T
347
-
348
- # Get the coordinates of bounding boxes
349
- if x1y1x2y2: # x1, y1, x2, y2 = box1
350
- b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
351
- b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
352
- else: # transform from xywh to xyxy
353
- b1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2
354
- b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2
355
- b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2
356
- b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2
357
-
358
- # Intersection area
359
- inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \
360
- (torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0)
361
-
362
- # Union Area
363
- w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps
364
- w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps
365
- union = w1 * h1 + w2 * h2 - inter + eps
366
-
367
- iou = inter / union
368
-
369
- if GIoU or DIoU or CIoU:
370
- cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1) # convex (smallest enclosing box) width
371
- ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1) # convex height
372
- if CIoU or DIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
373
- c2 = cw ** 2 + ch ** 2 + eps # convex diagonal squared
374
- rho2 = ((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 +
375
- (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4 # center distance squared
376
- if DIoU:
377
- return iou - rho2 / c2 # DIoU
378
- elif CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
379
- v = (4 / math.pi ** 2) * torch.pow(torch.atan(w2 / (h2 + eps)) - torch.atan(w1 / (h1 + eps)), 2)
380
- with torch.no_grad():
381
- alpha = v / (v - iou + (1 + eps))
382
- return iou - (rho2 / c2 + v * alpha) # CIoU
383
- else: # GIoU https://arxiv.org/pdf/1902.09630.pdf
384
- c_area = cw * ch + eps # convex area
385
- return iou - (c_area - union) / c_area # GIoU
386
- else:
387
- return iou # IoU
388
-
389
-
390
-
391
-
392
- def bbox_alpha_iou(box1, box2, x1y1x2y2=False, GIoU=False, DIoU=False, CIoU=False, alpha=2, eps=1e-9):
393
- # Returns tsqrt_he IoU of box1 to box2. box1 is 4, box2 is nx4
394
- box2 = box2.T
395
-
396
- # Get the coordinates of bounding boxes
397
- if x1y1x2y2: # x1, y1, x2, y2 = box1
398
- b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
399
- b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
400
- else: # transform from xywh to xyxy
401
- b1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2
402
- b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2
403
- b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2
404
- b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2
405
-
406
- # Intersection area
407
- inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \
408
- (torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0)
409
-
410
- # Union Area
411
- w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps
412
- w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps
413
- union = w1 * h1 + w2 * h2 - inter + eps
414
-
415
- # change iou into pow(iou+eps)
416
- # iou = inter / union
417
- iou = torch.pow(inter/union + eps, alpha)
418
- # beta = 2 * alpha
419
- if GIoU or DIoU or CIoU:
420
- cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1) # convex (smallest enclosing box) width
421
- ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1) # convex height
422
- if CIoU or DIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
423
- c2 = (cw ** 2 + ch ** 2) ** alpha + eps # convex diagonal
424
- rho_x = torch.abs(b2_x1 + b2_x2 - b1_x1 - b1_x2)
425
- rho_y = torch.abs(b2_y1 + b2_y2 - b1_y1 - b1_y2)
426
- rho2 = ((rho_x ** 2 + rho_y ** 2) / 4) ** alpha # center distance
427
- if DIoU:
428
- return iou - rho2 / c2 # DIoU
429
- elif CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
430
- v = (4 / math.pi ** 2) * torch.pow(torch.atan(w2 / h2) - torch.atan(w1 / h1), 2)
431
- with torch.no_grad():
432
- alpha_ciou = v / ((1 + eps) - inter / union + v)
433
- # return iou - (rho2 / c2 + v * alpha_ciou) # CIoU
434
- return iou - (rho2 / c2 + torch.pow(v * alpha_ciou + eps, alpha)) # CIoU
435
- else: # GIoU https://arxiv.org/pdf/1902.09630.pdf
436
- # c_area = cw * ch + eps # convex area
437
- # return iou - (c_area - union) / c_area # GIoU
438
- c_area = torch.max(cw * ch + eps, union) # convex area
439
- return iou - torch.pow((c_area - union) / c_area + eps, alpha) # GIoU
440
- else:
441
- return iou # torch.log(iou+eps) or iou
442
-
443
-
444
- def box_iou(box1, box2):
445
- # https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py
446
- """
447
- Return intersection-over-union (Jaccard index) of boxes.
448
- Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
449
- Arguments:
450
- box1 (Tensor[N, 4])
451
- box2 (Tensor[M, 4])
452
- Returns:
453
- iou (Tensor[N, M]): the NxM matrix containing the pairwise
454
- IoU values for every element in boxes1 and boxes2
455
- """
456
-
457
- def box_area(box):
458
- # box = 4xn
459
- return (box[2] - box[0]) * (box[3] - box[1])
460
-
461
- area1 = box_area(box1.T)
462
- area2 = box_area(box2.T)
463
-
464
- # inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2)
465
- inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2)
466
- return inter / (area1[:, None] + area2 - inter) # iou = inter / (area1 + area2 - inter)
467
-
468
-
469
- def wh_iou(wh1, wh2):
470
- # Returns the nxm IoU matrix. wh1 is nx2, wh2 is mx2
471
- wh1 = wh1[:, None] # [N,1,2]
472
- wh2 = wh2[None] # [1,M,2]
473
- inter = torch.min(wh1, wh2).prod(2) # [N,M]
474
- return inter / (wh1.prod(2) + wh2.prod(2) - inter) # iou = inter / (area1 + area2 - inter)
475
-
476
-
477
- def box_giou(box1, box2):
478
- """
479
- Return generalized intersection-over-union (Jaccard index) between two sets of boxes.
480
- Both sets of boxes are expected to be in ``(x1, y1, x2, y2)`` format with
481
- ``0 <= x1 < x2`` and ``0 <= y1 < y2``.
482
- Args:
483
- boxes1 (Tensor[N, 4]): first set of boxes
484
- boxes2 (Tensor[M, 4]): second set of boxes
485
- Returns:
486
- Tensor[N, M]: the NxM matrix containing the pairwise generalized IoU values
487
- for every element in boxes1 and boxes2
488
- """
489
-
490
- def box_area(box):
491
- # box = 4xn
492
- return (box[2] - box[0]) * (box[3] - box[1])
493
-
494
- area1 = box_area(box1.T)
495
- area2 = box_area(box2.T)
496
-
497
- inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2)
498
- union = (area1[:, None] + area2 - inter)
499
-
500
- iou = inter / union
501
-
502
- lti = torch.min(box1[:, None, :2], box2[:, :2])
503
- rbi = torch.max(box1[:, None, 2:], box2[:, 2:])
504
-
505
- whi = (rbi - lti).clamp(min=0) # [N,M,2]
506
- areai = whi[:, :, 0] * whi[:, :, 1]
507
-
508
- return iou - (areai - union) / areai
509
-
510
-
511
- def box_ciou(box1, box2, eps: float = 1e-7):
512
- """
513
- Return complete intersection-over-union (Jaccard index) between two sets of boxes.
514
- Both sets of boxes are expected to be in ``(x1, y1, x2, y2)`` format with
515
- ``0 <= x1 < x2`` and ``0 <= y1 < y2``.
516
- Args:
517
- boxes1 (Tensor[N, 4]): first set of boxes
518
- boxes2 (Tensor[M, 4]): second set of boxes
519
- eps (float, optional): small number to prevent division by zero. Default: 1e-7
520
- Returns:
521
- Tensor[N, M]: the NxM matrix containing the pairwise complete IoU values
522
- for every element in boxes1 and boxes2
523
- """
524
-
525
- def box_area(box):
526
- # box = 4xn
527
- return (box[2] - box[0]) * (box[3] - box[1])
528
-
529
- area1 = box_area(box1.T)
530
- area2 = box_area(box2.T)
531
-
532
- inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2)
533
- union = (area1[:, None] + area2 - inter)
534
-
535
- iou = inter / union
536
-
537
- lti = torch.min(box1[:, None, :2], box2[:, :2])
538
- rbi = torch.max(box1[:, None, 2:], box2[:, 2:])
539
-
540
- whi = (rbi - lti).clamp(min=0) # [N,M,2]
541
- diagonal_distance_squared = (whi[:, :, 0] ** 2) + (whi[:, :, 1] ** 2) + eps
542
-
543
- # centers of boxes
544
- x_p = (box1[:, None, 0] + box1[:, None, 2]) / 2
545
- y_p = (box1[:, None, 1] + box1[:, None, 3]) / 2
546
- x_g = (box2[:, 0] + box2[:, 2]) / 2
547
- y_g = (box2[:, 1] + box2[:, 3]) / 2
548
- # The distance between boxes' centers squared.
549
- centers_distance_squared = (x_p - x_g) ** 2 + (y_p - y_g) ** 2
550
-
551
- w_pred = box1[:, None, 2] - box1[:, None, 0]
552
- h_pred = box1[:, None, 3] - box1[:, None, 1]
553
-
554
- w_gt = box2[:, 2] - box2[:, 0]
555
- h_gt = box2[:, 3] - box2[:, 1]
556
-
557
- v = (4 / (torch.pi ** 2)) * torch.pow((torch.atan(w_gt / h_gt) - torch.atan(w_pred / h_pred)), 2)
558
- with torch.no_grad():
559
- alpha = v / (1 - iou + v + eps)
560
- return iou - (centers_distance_squared / diagonal_distance_squared) - alpha * v
561
-
562
-
563
- def box_diou(box1, box2, eps: float = 1e-7):
564
- """
565
- Return distance intersection-over-union (Jaccard index) between two sets of boxes.
566
- Both sets of boxes are expected to be in ``(x1, y1, x2, y2)`` format with
567
- ``0 <= x1 < x2`` and ``0 <= y1 < y2``.
568
- Args:
569
- boxes1 (Tensor[N, 4]): first set of boxes
570
- boxes2 (Tensor[M, 4]): second set of boxes
571
- eps (float, optional): small number to prevent division by zero. Default: 1e-7
572
- Returns:
573
- Tensor[N, M]: the NxM matrix containing the pairwise distance IoU values
574
- for every element in boxes1 and boxes2
575
- """
576
-
577
- def box_area(box):
578
- # box = 4xn
579
- return (box[2] - box[0]) * (box[3] - box[1])
580
-
581
- area1 = box_area(box1.T)
582
- area2 = box_area(box2.T)
583
-
584
- inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2)
585
- union = (area1[:, None] + area2 - inter)
586
-
587
- iou = inter / union
588
-
589
- lti = torch.min(box1[:, None, :2], box2[:, :2])
590
- rbi = torch.max(box1[:, None, 2:], box2[:, 2:])
591
-
592
- whi = (rbi - lti).clamp(min=0) # [N,M,2]
593
- diagonal_distance_squared = (whi[:, :, 0] ** 2) + (whi[:, :, 1] ** 2) + eps
594
-
595
- # centers of boxes
596
- x_p = (box1[:, None, 0] + box1[:, None, 2]) / 2
597
- y_p = (box1[:, None, 1] + box1[:, None, 3]) / 2
598
- x_g = (box2[:, 0] + box2[:, 2]) / 2
599
- y_g = (box2[:, 1] + box2[:, 3]) / 2
600
- # The distance between boxes' centers squared.
601
- centers_distance_squared = (x_p - x_g) ** 2 + (y_p - y_g) ** 2
602
-
603
- # The distance IoU is the IoU penalized by a normalized
604
- # distance between boxes' centers squared.
605
- return iou - (centers_distance_squared / diagonal_distance_squared)
606
-
607
-
608
- def non_max_suppression(prediction, conf_thres=0.25, iou_thres=0.45, classes=None, agnostic=False, multi_label=False,
609
- labels=()):
610
- """Runs Non-Maximum Suppression (NMS) on inference results
611
-
612
- Returns:
613
- list of detections, on (n,6) tensor per image [xyxy, conf, cls]
614
- """
615
-
616
- nc = prediction.shape[2] - 5 # number of classes
617
- xc = prediction[..., 4] > conf_thres # candidates
618
-
619
- # Settings
620
- min_wh, max_wh = 2, 4096 # (pixels) minimum and maximum box width and height
621
- max_det = 300 # maximum number of detections per image
622
- max_nms = 30000 # maximum number of boxes into torchvision.ops.nms()
623
- time_limit = 10.0 # seconds to quit after
624
- redundant = True # require redundant detections
625
- multi_label &= nc > 1 # multiple labels per box (adds 0.5ms/img)
626
- merge = False # use merge-NMS
627
-
628
- t = time.time()
629
- output = [torch.zeros((0, 6), device=prediction.device)] * prediction.shape[0]
630
- for xi, x in enumerate(prediction): # image index, image inference
631
- # Apply constraints
632
- # x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0 # width-height
633
- x = x[xc[xi]] # confidence
634
-
635
- # Cat apriori labels if autolabelling
636
- if labels and len(labels[xi]):
637
- l = labels[xi]
638
- v = torch.zeros((len(l), nc + 5), device=x.device)
639
- v[:, :4] = l[:, 1:5] # box
640
- v[:, 4] = 1.0 # conf
641
- v[range(len(l)), l[:, 0].long() + 5] = 1.0 # cls
642
- x = torch.cat((x, v), 0)
643
-
644
- # If none remain process next image
645
- if not x.shape[0]:
646
- continue
647
-
648
- # Compute conf
649
- if nc == 1:
650
- x[:, 5:] = x[:, 4:5] # for models with one class, cls_loss is 0 and cls_conf is always 0.5,
651
- # so there is no need to multiplicate.
652
- else:
653
- x[:, 5:] *= x[:, 4:5] # conf = obj_conf * cls_conf
654
-
655
- # Box (center x, center y, width, height) to (x1, y1, x2, y2)
656
- box = xywh2xyxy(x[:, :4])
657
-
658
- # Detections matrix nx6 (xyxy, conf, cls)
659
- if multi_label:
660
- i, j = (x[:, 5:] > conf_thres).nonzero(as_tuple=False).T
661
- x = torch.cat((box[i], x[i, j + 5, None], j[:, None].float()), 1)
662
- else: # best class only
663
- conf, j = x[:, 5:].max(1, keepdim=True)
664
- x = torch.cat((box, conf, j.float()), 1)[conf.view(-1) > conf_thres]
665
-
666
- # Filter by class
667
- if classes is not None:
668
- x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]
669
-
670
- # Apply finite constraint
671
- # if not torch.isfinite(x).all():
672
- # x = x[torch.isfinite(x).all(1)]
673
-
674
- # Check shape
675
- n = x.shape[0] # number of boxes
676
- if not n: # no boxes
677
- continue
678
- elif n > max_nms: # excess boxes
679
- x = x[x[:, 4].argsort(descending=True)[:max_nms]] # sort by confidence
680
-
681
- # Batched NMS
682
- c = x[:, 5:6] * (0 if agnostic else max_wh) # classes
683
- boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores
684
- i = torchvision.ops.nms(boxes, scores, iou_thres) # NMS
685
- if i.shape[0] > max_det: # limit detections
686
- i = i[:max_det]
687
- if merge and (1 < n < 3E3): # Merge NMS (boxes merged using weighted mean)
688
- # update boxes as boxes(i,4) = weights(i,n) * boxes(n,4)
689
- iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix
690
- weights = iou * scores[None] # box weights
691
- x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True) # merged boxes
692
- if redundant:
693
- i = i[iou.sum(1) > 1] # require redundancy
694
-
695
- output[xi] = x[i]
696
- if (time.time() - t) > time_limit:
697
- print(f'WARNING: NMS time limit {time_limit}s exceeded')
698
- break # time limit exceeded
699
-
700
- return output
701
-
702
-
703
- def non_max_suppression_kpt(prediction, conf_thres=0.25, iou_thres=0.45, classes=None, agnostic=False, multi_label=False,
704
- labels=(), kpt_label=False, nc=None, nkpt=None):
705
- """Runs Non-Maximum Suppression (NMS) on inference results
706
-
707
- Returns:
708
- list of detections, on (n,6) tensor per image [xyxy, conf, cls]
709
- """
710
- if nc is None:
711
- nc = prediction.shape[2] - 5 if not kpt_label else prediction.shape[2] - 56 # number of classes
712
- xc = prediction[..., 4] > conf_thres # candidates
713
-
714
- # Settings
715
- min_wh, max_wh = 2, 4096 # (pixels) minimum and maximum box width and height
716
- max_det = 300 # maximum number of detections per image
717
- max_nms = 30000 # maximum number of boxes into torchvision.ops.nms()
718
- time_limit = 10.0 # seconds to quit after
719
- redundant = True # require redundant detections
720
- multi_label &= nc > 1 # multiple labels per box (adds 0.5ms/img)
721
- merge = False # use merge-NMS
722
-
723
- t = time.time()
724
- output = [torch.zeros((0,6), device=prediction.device)] * prediction.shape[0]
725
- for xi, x in enumerate(prediction): # image index, image inference
726
- # Apply constraints
727
- # x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0 # width-height
728
- x = x[xc[xi]] # confidence
729
-
730
- # Cat apriori labels if autolabelling
731
- if labels and len(labels[xi]):
732
- l = labels[xi]
733
- v = torch.zeros((len(l), nc + 5), device=x.device)
734
- v[:, :4] = l[:, 1:5] # box
735
- v[:, 4] = 1.0 # conf
736
- v[range(len(l)), l[:, 0].long() + 5] = 1.0 # cls
737
- x = torch.cat((x, v), 0)
738
-
739
- # If none remain process next image
740
- if not x.shape[0]:
741
- continue
742
-
743
- # Compute conf
744
- x[:, 5:5+nc] *= x[:, 4:5] # conf = obj_conf * cls_conf
745
-
746
- # Box (center x, center y, width, height) to (x1, y1, x2, y2)
747
- box = xywh2xyxy(x[:, :4])
748
-
749
- # Detections matrix nx6 (xyxy, conf, cls)
750
- if multi_label:
751
- i, j = (x[:, 5:] > conf_thres).nonzero(as_tuple=False).T
752
- x = torch.cat((box[i], x[i, j + 5, None], j[:, None].float()), 1)
753
- else: # best class only
754
- if not kpt_label:
755
- conf, j = x[:, 5:].max(1, keepdim=True)
756
- x = torch.cat((box, conf, j.float()), 1)[conf.view(-1) > conf_thres]
757
- else:
758
- kpts = x[:, 6:]
759
- conf, j = x[:, 5:6].max(1, keepdim=True)
760
- x = torch.cat((box, conf, j.float(), kpts), 1)[conf.view(-1) > conf_thres]
761
-
762
-
763
- # Filter by class
764
- if classes is not None:
765
- x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]
766
-
767
- # Apply finite constraint
768
- # if not torch.isfinite(x).all():
769
- # x = x[torch.isfinite(x).all(1)]
770
-
771
- # Check shape
772
- n = x.shape[0] # number of boxes
773
- if not n: # no boxes
774
- continue
775
- elif n > max_nms: # excess boxes
776
- x = x[x[:, 4].argsort(descending=True)[:max_nms]] # sort by confidence
777
-
778
- # Batched NMS
779
- c = x[:, 5:6] * (0 if agnostic else max_wh) # classes
780
- boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores
781
- i = torchvision.ops.nms(boxes, scores, iou_thres) # NMS
782
- if i.shape[0] > max_det: # limit detections
783
- i = i[:max_det]
784
- if merge and (1 < n < 3E3): # Merge NMS (boxes merged using weighted mean)
785
- # update boxes as boxes(i,4) = weights(i,n) * boxes(n,4)
786
- iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix
787
- weights = iou * scores[None] # box weights
788
- x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True) # merged boxes
789
- if redundant:
790
- i = i[iou.sum(1) > 1] # require redundancy
791
-
792
- output[xi] = x[i]
793
- if (time.time() - t) > time_limit:
794
- print(f'WARNING: NMS time limit {time_limit}s exceeded')
795
- break # time limit exceeded
796
-
797
- return output
798
-
799
-
800
- def strip_optimizer(f='best.pt', s=''): # from utils.general import *; strip_optimizer()
801
- # Strip optimizer from 'f' to finalize training, optionally save as 's'
802
- x = torch.load(f, map_location=torch.device('cpu'))
803
- if x.get('ema'):
804
- x['model'] = x['ema'] # replace model with ema
805
- for k in 'optimizer', 'training_results', 'wandb_id', 'ema', 'updates': # keys
806
- x[k] = None
807
- x['epoch'] = -1
808
- x['model'].half() # to FP16
809
- for p in x['model'].parameters():
810
- p.requires_grad = False
811
- torch.save(x, s or f)
812
- mb = os.path.getsize(s or f) / 1E6 # filesize
813
- print(f"Optimizer stripped from {f},{(' saved as %s,' % s) if s else ''} {mb:.1f}MB")
814
-
815
-
816
- def print_mutation(hyp, results, yaml_file='hyp_evolved.yaml', bucket=''):
817
- # Print mutation results to evolve.txt (for use with train.py --evolve)
818
- a = '%10s' * len(hyp) % tuple(hyp.keys()) # hyperparam keys
819
- b = '%10.3g' * len(hyp) % tuple(hyp.values()) # hyperparam values
820
- c = '%10.4g' * len(results) % results # results (P, R, mAP@0.5, mAP@0.5:0.95, val_losses x 3)
821
- print('\n%s\n%s\nEvolved fitness: %s\n' % (a, b, c))
822
-
823
- if bucket:
824
- url = 'gs://%s/evolve.txt' % bucket
825
- if gsutil_getsize(url) > (os.path.getsize('evolve.txt') if os.path.exists('evolve.txt') else 0):
826
- os.system('gsutil cp %s .' % url) # download evolve.txt if larger than local
827
-
828
- with open('evolve.txt', 'a') as f: # append result
829
- f.write(c + b + '\n')
830
- x = np.unique(np.loadtxt('evolve.txt', ndmin=2), axis=0) # load unique rows
831
- x = x[np.argsort(-fitness(x))] # sort
832
- np.savetxt('evolve.txt', x, '%10.3g') # save sort by fitness
833
-
834
- # Save yaml
835
- for i, k in enumerate(hyp.keys()):
836
- hyp[k] = float(x[0, i + 7])
837
- with open(yaml_file, 'w') as f:
838
- results = tuple(x[0, :7])
839
- c = '%10.4g' * len(results) % results # results (P, R, mAP@0.5, mAP@0.5:0.95, val_losses x 3)
840
- f.write('# Hyperparameter Evolution Results\n# Generations: %g\n# Metrics: ' % len(x) + c + '\n\n')
841
- yaml.dump(hyp, f, sort_keys=False)
842
-
843
- if bucket:
844
- os.system('gsutil cp evolve.txt %s gs://%s' % (yaml_file, bucket)) # upload
845
-
846
-
847
- def apply_classifier(x, model, img, im0):
848
- # applies a second stage classifier to yolo outputs
849
- im0 = [im0] if isinstance(im0, np.ndarray) else im0
850
- for i, d in enumerate(x): # per image
851
- if d is not None and len(d):
852
- d = d.clone()
853
-
854
- # Reshape and pad cutouts
855
- b = xyxy2xywh(d[:, :4]) # boxes
856
- b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1) # rectangle to square
857
- b[:, 2:] = b[:, 2:] * 1.3 + 30 # pad
858
- d[:, :4] = xywh2xyxy(b).long()
859
-
860
- # Rescale boxes from img_size to im0 size
861
- scale_coords(img.shape[2:], d[:, :4], im0[i].shape)
862
-
863
- # Classes
864
- pred_cls1 = d[:, 5].long()
865
- ims = []
866
- for j, a in enumerate(d): # per item
867
- cutout = im0[i][int(a[1]):int(a[3]), int(a[0]):int(a[2])]
868
- im = cv2.resize(cutout, (224, 224)) # BGR
869
- # cv2.imwrite('test%i.jpg' % j, cutout)
870
-
871
- im = im[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
872
- im = np.ascontiguousarray(im, dtype=np.float32) # uint8 to float32
873
- im /= 255.0 # 0 - 255 to 0.0 - 1.0
874
- ims.append(im)
875
-
876
- pred_cls2 = model(torch.Tensor(ims).to(d.device)).argmax(1) # classifier prediction
877
- x[i] = x[i][pred_cls1 == pred_cls2] # retain matching class detections
878
-
879
- return x
880
-
881
-
882
- def increment_path(path, exist_ok=True, sep=''):
883
- # Increment path, i.e. runs/exp --> runs/exp{sep}0, runs/exp{sep}1 etc.
884
- path = Path(path) # os-agnostic
885
- if (path.exists() and exist_ok) or (not path.exists()):
886
- return str(path)
887
- else:
888
- dirs = glob.glob(f"{path}{sep}*") # similar paths
889
- matches = [re.search(rf"%s{sep}(\d+)" % path.stem, d) for d in dirs]
890
- i = [int(m.groups()[0]) for m in matches if m] # indices
891
- n = max(i) + 1 if i else 2 # increment number
892
- return f"{path}{sep}{n}" # update path
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
utils/google_app_engine/Dockerfile DELETED
@@ -1,25 +0,0 @@
1
- FROM gcr.io/google-appengine/python
2
-
3
- # Create a virtualenv for dependencies. This isolates these packages from
4
- # system-level packages.
5
- # Use -p python3 or -p python3.7 to select python version. Default is version 2.
6
- RUN virtualenv /env -p python3
7
-
8
- # Setting these environment variables are the same as running
9
- # source /env/bin/activate.
10
- ENV VIRTUAL_ENV /env
11
- ENV PATH /env/bin:$PATH
12
-
13
- RUN apt-get update && apt-get install -y python-opencv
14
-
15
- # Copy the application's requirements.txt and run pip to install all
16
- # dependencies into the virtualenv.
17
- ADD requirements.txt /app/requirements.txt
18
- RUN pip install -r /app/requirements.txt
19
-
20
- # Add the application source code.
21
- ADD . /app
22
-
23
- # Run a WSGI server to serve the application. gunicorn must be declared as
24
- # a dependency in requirements.txt.
25
- CMD gunicorn -b :$PORT main:app
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
utils/google_app_engine/additional_requirements.txt DELETED
@@ -1,4 +0,0 @@
1
- # add these requirements in your app on top of the existing ones
2
- pip==18.1
3
- Flask==1.0.2
4
- gunicorn==19.9.0
 
 
 
 
 
utils/google_app_engine/app.yaml DELETED
@@ -1,14 +0,0 @@
1
- runtime: custom
2
- env: flex
3
-
4
- service: yolorapp
5
-
6
- liveness_check:
7
- initial_delay_sec: 600
8
-
9
- manual_scaling:
10
- instances: 1
11
- resources:
12
- cpu: 1
13
- memory_gb: 4
14
- disk_size_gb: 20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
utils/google_utils.py DELETED
@@ -1,123 +0,0 @@
1
- # Google utils: https://cloud.google.com/storage/docs/reference/libraries
2
-
3
- import os
4
- import platform
5
- import subprocess
6
- import time
7
- from pathlib import Path
8
-
9
- import requests
10
- import torch
11
-
12
-
13
- def gsutil_getsize(url=''):
14
- # gs://bucket/file size https://cloud.google.com/storage/docs/gsutil/commands/du
15
- s = subprocess.check_output(f'gsutil du {url}', shell=True).decode('utf-8')
16
- return eval(s.split(' ')[0]) if len(s) else 0 # bytes
17
-
18
-
19
- def attempt_download(file, repo='WongKinYiu/yolov7'):
20
- # Attempt file download if does not exist
21
- file = Path(str(file).strip().replace("'", '').lower())
22
-
23
- if not file.exists():
24
- try:
25
- response = requests.get(f'https://api.github.com/repos/{repo}/releases/latest').json() # github api
26
- assets = [x['name'] for x in response['assets']] # release assets
27
- tag = response['tag_name'] # i.e. 'v1.0'
28
- except: # fallback plan
29
- assets = ['yolov7.pt', 'yolov7-tiny.pt', 'yolov7x.pt', 'yolov7-d6.pt', 'yolov7-e6.pt',
30
- 'yolov7-e6e.pt', 'yolov7-w6.pt']
31
- tag = subprocess.check_output('git tag', shell=True).decode().split()[-1]
32
-
33
- name = file.name
34
- if name in assets:
35
- msg = f'{file} missing, try downloading from https://github.com/{repo}/releases/'
36
- redundant = False # second download option
37
- try: # GitHub
38
- url = f'https://github.com/{repo}/releases/download/{tag}/{name}'
39
- print(f'Downloading {url} to {file}...')
40
- torch.hub.download_url_to_file(url, file)
41
- assert file.exists() and file.stat().st_size > 1E6 # check
42
- except Exception as e: # GCP
43
- print(f'Download error: {e}')
44
- assert redundant, 'No secondary mirror'
45
- url = f'https://storage.googleapis.com/{repo}/ckpt/{name}'
46
- print(f'Downloading {url} to {file}...')
47
- os.system(f'curl -L {url} -o {file}') # torch.hub.download_url_to_file(url, weights)
48
- finally:
49
- if not file.exists() or file.stat().st_size < 1E6: # check
50
- file.unlink(missing_ok=True) # remove partial downloads
51
- print(f'ERROR: Download failure: {msg}')
52
- print('')
53
- return
54
-
55
-
56
- def gdrive_download(id='', file='tmp.zip'):
57
- # Downloads a file from Google Drive. from yolov7.utils.google_utils import *; gdrive_download()
58
- t = time.time()
59
- file = Path(file)
60
- cookie = Path('cookie') # gdrive cookie
61
- print(f'Downloading https://drive.google.com/uc?export=download&id={id} as {file}... ', end='')
62
- file.unlink(missing_ok=True) # remove existing file
63
- cookie.unlink(missing_ok=True) # remove existing cookie
64
-
65
- # Attempt file download
66
- out = "NUL" if platform.system() == "Windows" else "/dev/null"
67
- os.system(f'curl -c ./cookie -s -L "drive.google.com/uc?export=download&id={id}" > {out}')
68
- if os.path.exists('cookie'): # large file
69
- s = f'curl -Lb ./cookie "drive.google.com/uc?export=download&confirm={get_token()}&id={id}" -o {file}'
70
- else: # small file
71
- s = f'curl -s -L -o {file} "drive.google.com/uc?export=download&id={id}"'
72
- r = os.system(s) # execute, capture return
73
- cookie.unlink(missing_ok=True) # remove existing cookie
74
-
75
- # Error check
76
- if r != 0:
77
- file.unlink(missing_ok=True) # remove partial
78
- print('Download error ') # raise Exception('Download error')
79
- return r
80
-
81
- # Unzip if archive
82
- if file.suffix == '.zip':
83
- print('unzipping... ', end='')
84
- os.system(f'unzip -q {file}') # unzip
85
- file.unlink() # remove zip to free space
86
-
87
- print(f'Done ({time.time() - t:.1f}s)')
88
- return r
89
-
90
-
91
- def get_token(cookie="./cookie"):
92
- with open(cookie) as f:
93
- for line in f:
94
- if "download" in line:
95
- return line.split()[-1]
96
- return ""
97
-
98
- # def upload_blob(bucket_name, source_file_name, destination_blob_name):
99
- # # Uploads a file to a bucket
100
- # # https://cloud.google.com/storage/docs/uploading-objects#storage-upload-object-python
101
- #
102
- # storage_client = storage.Client()
103
- # bucket = storage_client.get_bucket(bucket_name)
104
- # blob = bucket.blob(destination_blob_name)
105
- #
106
- # blob.upload_from_filename(source_file_name)
107
- #
108
- # print('File {} uploaded to {}.'.format(
109
- # source_file_name,
110
- # destination_blob_name))
111
- #
112
- #
113
- # def download_blob(bucket_name, source_blob_name, destination_file_name):
114
- # # Uploads a blob from a bucket
115
- # storage_client = storage.Client()
116
- # bucket = storage_client.get_bucket(bucket_name)
117
- # blob = bucket.blob(source_blob_name)
118
- #
119
- # blob.download_to_filename(destination_file_name)
120
- #
121
- # print('Blob {} downloaded to {}.'.format(
122
- # source_blob_name,
123
- # destination_file_name))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
utils/loss.py DELETED
@@ -1,1697 +0,0 @@
1
- # Loss functions
2
-
3
- import torch
4
- import torch.nn as nn
5
- import torch.nn.functional as F
6
-
7
- from utils.general import bbox_iou, bbox_alpha_iou, box_iou, box_giou, box_diou, box_ciou, xywh2xyxy
8
- from utils.torch_utils import is_parallel
9
-
10
-
11
- def smooth_BCE(eps=0.1): # https://github.com/ultralytics/yolov3/issues/238#issuecomment-598028441
12
- # return positive, negative label smoothing BCE targets
13
- return 1.0 - 0.5 * eps, 0.5 * eps
14
-
15
-
16
- class BCEBlurWithLogitsLoss(nn.Module):
17
- # BCEwithLogitLoss() with reduced missing label effects.
18
- def __init__(self, alpha=0.05):
19
- super(BCEBlurWithLogitsLoss, self).__init__()
20
- self.loss_fcn = nn.BCEWithLogitsLoss(reduction='none') # must be nn.BCEWithLogitsLoss()
21
- self.alpha = alpha
22
-
23
- def forward(self, pred, true):
24
- loss = self.loss_fcn(pred, true)
25
- pred = torch.sigmoid(pred) # prob from logits
26
- dx = pred - true # reduce only missing label effects
27
- # dx = (pred - true).abs() # reduce missing label and false label effects
28
- alpha_factor = 1 - torch.exp((dx - 1) / (self.alpha + 1e-4))
29
- loss *= alpha_factor
30
- return loss.mean()
31
-
32
-
33
- class SigmoidBin(nn.Module):
34
- stride = None # strides computed during build
35
- export = False # onnx export
36
-
37
- def __init__(self, bin_count=10, min=0.0, max=1.0, reg_scale = 2.0, use_loss_regression=True, use_fw_regression=True, BCE_weight=1.0, smooth_eps=0.0):
38
- super(SigmoidBin, self).__init__()
39
-
40
- self.bin_count = bin_count
41
- self.length = bin_count + 1
42
- self.min = min
43
- self.max = max
44
- self.scale = float(max - min)
45
- self.shift = self.scale / 2.0
46
-
47
- self.use_loss_regression = use_loss_regression
48
- self.use_fw_regression = use_fw_regression
49
- self.reg_scale = reg_scale
50
- self.BCE_weight = BCE_weight
51
-
52
- start = min + (self.scale/2.0) / self.bin_count
53
- end = max - (self.scale/2.0) / self.bin_count
54
- step = self.scale / self.bin_count
55
- self.step = step
56
- #print(f" start = {start}, end = {end}, step = {step} ")
57
-
58
- bins = torch.range(start, end + 0.0001, step).float()
59
- self.register_buffer('bins', bins)
60
-
61
-
62
- self.cp = 1.0 - 0.5 * smooth_eps
63
- self.cn = 0.5 * smooth_eps
64
-
65
- self.BCEbins = nn.BCEWithLogitsLoss(pos_weight=torch.Tensor([BCE_weight]))
66
- self.MSELoss = nn.MSELoss()
67
-
68
- def get_length(self):
69
- return self.length
70
-
71
- def forward(self, pred):
72
- assert pred.shape[-1] == self.length, 'pred.shape[-1]=%d is not equal to self.length=%d' % (pred.shape[-1], self.length)
73
-
74
- pred_reg = (pred[..., 0] * self.reg_scale - self.reg_scale/2.0) * self.step
75
- pred_bin = pred[..., 1:(1+self.bin_count)]
76
-
77
- _, bin_idx = torch.max(pred_bin, dim=-1)
78
- bin_bias = self.bins[bin_idx]
79
-
80
- if self.use_fw_regression:
81
- result = pred_reg + bin_bias
82
- else:
83
- result = bin_bias
84
- result = result.clamp(min=self.min, max=self.max)
85
-
86
- return result
87
-
88
-
89
- def training_loss(self, pred, target):
90
- assert pred.shape[-1] == self.length, 'pred.shape[-1]=%d is not equal to self.length=%d' % (pred.shape[-1], self.length)
91
- assert pred.shape[0] == target.shape[0], 'pred.shape=%d is not equal to the target.shape=%d' % (pred.shape[0], target.shape[0])
92
- device = pred.device
93
-
94
- pred_reg = (pred[..., 0].sigmoid() * self.reg_scale - self.reg_scale/2.0) * self.step
95
- pred_bin = pred[..., 1:(1+self.bin_count)]
96
-
97
- diff_bin_target = torch.abs(target[..., None] - self.bins)
98
- _, bin_idx = torch.min(diff_bin_target, dim=-1)
99
-
100
- bin_bias = self.bins[bin_idx]
101
- bin_bias.requires_grad = False
102
- result = pred_reg + bin_bias
103
-
104
- target_bins = torch.full_like(pred_bin, self.cn, device=device) # targets
105
- n = pred.shape[0]
106
- target_bins[range(n), bin_idx] = self.cp
107
-
108
- loss_bin = self.BCEbins(pred_bin, target_bins) # BCE
109
-
110
- if self.use_loss_regression:
111
- loss_regression = self.MSELoss(result, target) # MSE
112
- loss = loss_bin + loss_regression
113
- else:
114
- loss = loss_bin
115
-
116
- out_result = result.clamp(min=self.min, max=self.max)
117
-
118
- return loss, out_result
119
-
120
-
121
- class FocalLoss(nn.Module):
122
- # Wraps focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)
123
- def __init__(self, loss_fcn, gamma=1.5, alpha=0.25):
124
- super(FocalLoss, self).__init__()
125
- self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss()
126
- self.gamma = gamma
127
- self.alpha = alpha
128
- self.reduction = loss_fcn.reduction
129
- self.loss_fcn.reduction = 'none' # required to apply FL to each element
130
-
131
- def forward(self, pred, true):
132
- loss = self.loss_fcn(pred, true)
133
- # p_t = torch.exp(-loss)
134
- # loss *= self.alpha * (1.000001 - p_t) ** self.gamma # non-zero power for gradient stability
135
-
136
- # TF implementation https://github.com/tensorflow/addons/blob/v0.7.1/tensorflow_addons/losses/focal_loss.py
137
- pred_prob = torch.sigmoid(pred) # prob from logits
138
- p_t = true * pred_prob + (1 - true) * (1 - pred_prob)
139
- alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha)
140
- modulating_factor = (1.0 - p_t) ** self.gamma
141
- loss *= alpha_factor * modulating_factor
142
-
143
- if self.reduction == 'mean':
144
- return loss.mean()
145
- elif self.reduction == 'sum':
146
- return loss.sum()
147
- else: # 'none'
148
- return loss
149
-
150
-
151
- class QFocalLoss(nn.Module):
152
- # Wraps Quality focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)
153
- def __init__(self, loss_fcn, gamma=1.5, alpha=0.25):
154
- super(QFocalLoss, self).__init__()
155
- self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss()
156
- self.gamma = gamma
157
- self.alpha = alpha
158
- self.reduction = loss_fcn.reduction
159
- self.loss_fcn.reduction = 'none' # required to apply FL to each element
160
-
161
- def forward(self, pred, true):
162
- loss = self.loss_fcn(pred, true)
163
-
164
- pred_prob = torch.sigmoid(pred) # prob from logits
165
- alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha)
166
- modulating_factor = torch.abs(true - pred_prob) ** self.gamma
167
- loss *= alpha_factor * modulating_factor
168
-
169
- if self.reduction == 'mean':
170
- return loss.mean()
171
- elif self.reduction == 'sum':
172
- return loss.sum()
173
- else: # 'none'
174
- return loss
175
-
176
- class RankSort(torch.autograd.Function):
177
- @staticmethod
178
- def forward(ctx, logits, targets, delta_RS=0.50, eps=1e-10):
179
-
180
- classification_grads=torch.zeros(logits.shape).cuda()
181
-
182
- #Filter fg logits
183
- fg_labels = (targets > 0.)
184
- fg_logits = logits[fg_labels]
185
- fg_targets = targets[fg_labels]
186
- fg_num = len(fg_logits)
187
-
188
- #Do not use bg with scores less than minimum fg logit
189
- #since changing its score does not have an effect on precision
190
- threshold_logit = torch.min(fg_logits)-delta_RS
191
- relevant_bg_labels=((targets==0) & (logits>=threshold_logit))
192
-
193
- relevant_bg_logits = logits[relevant_bg_labels]
194
- relevant_bg_grad=torch.zeros(len(relevant_bg_logits)).cuda()
195
- sorting_error=torch.zeros(fg_num).cuda()
196
- ranking_error=torch.zeros(fg_num).cuda()
197
- fg_grad=torch.zeros(fg_num).cuda()
198
-
199
- #sort the fg logits
200
- order=torch.argsort(fg_logits)
201
- #Loops over each positive following the order
202
- for ii in order:
203
- # Difference Transforms (x_ij)
204
- fg_relations=fg_logits-fg_logits[ii]
205
- bg_relations=relevant_bg_logits-fg_logits[ii]
206
-
207
- if delta_RS > 0:
208
- fg_relations=torch.clamp(fg_relations/(2*delta_RS)+0.5,min=0,max=1)
209
- bg_relations=torch.clamp(bg_relations/(2*delta_RS)+0.5,min=0,max=1)
210
- else:
211
- fg_relations = (fg_relations >= 0).float()
212
- bg_relations = (bg_relations >= 0).float()
213
-
214
- # Rank of ii among pos and false positive number (bg with larger scores)
215
- rank_pos=torch.sum(fg_relations)
216
- FP_num=torch.sum(bg_relations)
217
-
218
- # Rank of ii among all examples
219
- rank=rank_pos+FP_num
220
-
221
- # Ranking error of example ii. target_ranking_error is always 0. (Eq. 7)
222
- ranking_error[ii]=FP_num/rank
223
-
224
- # Current sorting error of example ii. (Eq. 7)
225
- current_sorting_error = torch.sum(fg_relations*(1-fg_targets))/rank_pos
226
-
227
- #Find examples in the target sorted order for example ii
228
- iou_relations = (fg_targets >= fg_targets[ii])
229
- target_sorted_order = iou_relations * fg_relations
230
-
231
- #The rank of ii among positives in sorted order
232
- rank_pos_target = torch.sum(target_sorted_order)
233
-
234
- #Compute target sorting error. (Eq. 8)
235
- #Since target ranking error is 0, this is also total target error
236
- target_sorting_error= torch.sum(target_sorted_order*(1-fg_targets))/rank_pos_target
237
-
238
- #Compute sorting error on example ii
239
- sorting_error[ii] = current_sorting_error - target_sorting_error
240
-
241
- #Identity Update for Ranking Error
242
- if FP_num > eps:
243
- #For ii the update is the ranking error
244
- fg_grad[ii] -= ranking_error[ii]
245
- #For negatives, distribute error via ranking pmf (i.e. bg_relations/FP_num)
246
- relevant_bg_grad += (bg_relations*(ranking_error[ii]/FP_num))
247
-
248
- #Find the positives that are misranked (the cause of the error)
249
- #These are the ones with smaller IoU but larger logits
250
- missorted_examples = (~ iou_relations) * fg_relations
251
-
252
- #Denominotor of sorting pmf
253
- sorting_pmf_denom = torch.sum(missorted_examples)
254
-
255
- #Identity Update for Sorting Error
256
- if sorting_pmf_denom > eps:
257
- #For ii the update is the sorting error
258
- fg_grad[ii] -= sorting_error[ii]
259
- #For positives, distribute error via sorting pmf (i.e. missorted_examples/sorting_pmf_denom)
260
- fg_grad += (missorted_examples*(sorting_error[ii]/sorting_pmf_denom))
261
-
262
- #Normalize gradients by number of positives
263
- classification_grads[fg_labels]= (fg_grad/fg_num)
264
- classification_grads[relevant_bg_labels]= (relevant_bg_grad/fg_num)
265
-
266
- ctx.save_for_backward(classification_grads)
267
-
268
- return ranking_error.mean(), sorting_error.mean()
269
-
270
- @staticmethod
271
- def backward(ctx, out_grad1, out_grad2):
272
- g1, =ctx.saved_tensors
273
- return g1*out_grad1, None, None, None
274
-
275
- class aLRPLoss(torch.autograd.Function):
276
- @staticmethod
277
- def forward(ctx, logits, targets, regression_losses, delta=1., eps=1e-5):
278
- classification_grads=torch.zeros(logits.shape).cuda()
279
-
280
- #Filter fg logits
281
- fg_labels = (targets == 1)
282
- fg_logits = logits[fg_labels]
283
- fg_num = len(fg_logits)
284
-
285
- #Do not use bg with scores less than minimum fg logit
286
- #since changing its score does not have an effect on precision
287
- threshold_logit = torch.min(fg_logits)-delta
288
-
289
- #Get valid bg logits
290
- relevant_bg_labels=((targets==0)&(logits>=threshold_logit))
291
- relevant_bg_logits=logits[relevant_bg_labels]
292
- relevant_bg_grad=torch.zeros(len(relevant_bg_logits)).cuda()
293
- rank=torch.zeros(fg_num).cuda()
294
- prec=torch.zeros(fg_num).cuda()
295
- fg_grad=torch.zeros(fg_num).cuda()
296
-
297
- max_prec=0
298
- #sort the fg logits
299
- order=torch.argsort(fg_logits)
300
- #Loops over each positive following the order
301
- for ii in order:
302
- #x_ij s as score differences with fgs
303
- fg_relations=fg_logits-fg_logits[ii]
304
- #Apply piecewise linear function and determine relations with fgs
305
- fg_relations=torch.clamp(fg_relations/(2*delta)+0.5,min=0,max=1)
306
- #Discard i=j in the summation in rank_pos
307
- fg_relations[ii]=0
308
-
309
- #x_ij s as score differences with bgs
310
- bg_relations=relevant_bg_logits-fg_logits[ii]
311
- #Apply piecewise linear function and determine relations with bgs
312
- bg_relations=torch.clamp(bg_relations/(2*delta)+0.5,min=0,max=1)
313
-
314
- #Compute the rank of the example within fgs and number of bgs with larger scores
315
- rank_pos=1+torch.sum(fg_relations)
316
- FP_num=torch.sum(bg_relations)
317
- #Store the total since it is normalizer also for aLRP Regression error
318
- rank[ii]=rank_pos+FP_num
319
-
320
- #Compute precision for this example to compute classification loss
321
- prec[ii]=rank_pos/rank[ii]
322
- #For stability, set eps to a infinitesmall value (e.g. 1e-6), then compute grads
323
- if FP_num > eps:
324
- fg_grad[ii] = -(torch.sum(fg_relations*regression_losses)+FP_num)/rank[ii]
325
- relevant_bg_grad += (bg_relations*(-fg_grad[ii]/FP_num))
326
-
327
- #aLRP with grad formulation fg gradient
328
- classification_grads[fg_labels]= fg_grad
329
- #aLRP with grad formulation bg gradient
330
- classification_grads[relevant_bg_labels]= relevant_bg_grad
331
-
332
- classification_grads /= (fg_num)
333
-
334
- cls_loss=1-prec.mean()
335
- ctx.save_for_backward(classification_grads)
336
-
337
- return cls_loss, rank, order
338
-
339
- @staticmethod
340
- def backward(ctx, out_grad1, out_grad2, out_grad3):
341
- g1, =ctx.saved_tensors
342
- return g1*out_grad1, None, None, None, None
343
-
344
-
345
- class APLoss(torch.autograd.Function):
346
- @staticmethod
347
- def forward(ctx, logits, targets, delta=1.):
348
- classification_grads=torch.zeros(logits.shape).cuda()
349
-
350
- #Filter fg logits
351
- fg_labels = (targets == 1)
352
- fg_logits = logits[fg_labels]
353
- fg_num = len(fg_logits)
354
-
355
- #Do not use bg with scores less than minimum fg logit
356
- #since changing its score does not have an effect on precision
357
- threshold_logit = torch.min(fg_logits)-delta
358
-
359
- #Get valid bg logits
360
- relevant_bg_labels=((targets==0)&(logits>=threshold_logit))
361
- relevant_bg_logits=logits[relevant_bg_labels]
362
- relevant_bg_grad=torch.zeros(len(relevant_bg_logits)).cuda()
363
- rank=torch.zeros(fg_num).cuda()
364
- prec=torch.zeros(fg_num).cuda()
365
- fg_grad=torch.zeros(fg_num).cuda()
366
-
367
- max_prec=0
368
- #sort the fg logits
369
- order=torch.argsort(fg_logits)
370
- #Loops over each positive following the order
371
- for ii in order:
372
- #x_ij s as score differences with fgs
373
- fg_relations=fg_logits-fg_logits[ii]
374
- #Apply piecewise linear function and determine relations with fgs
375
- fg_relations=torch.clamp(fg_relations/(2*delta)+0.5,min=0,max=1)
376
- #Discard i=j in the summation in rank_pos
377
- fg_relations[ii]=0
378
-
379
- #x_ij s as score differences with bgs
380
- bg_relations=relevant_bg_logits-fg_logits[ii]
381
- #Apply piecewise linear function and determine relations with bgs
382
- bg_relations=torch.clamp(bg_relations/(2*delta)+0.5,min=0,max=1)
383
-
384
- #Compute the rank of the example within fgs and number of bgs with larger scores
385
- rank_pos=1+torch.sum(fg_relations)
386
- FP_num=torch.sum(bg_relations)
387
- #Store the total since it is normalizer also for aLRP Regression error
388
- rank[ii]=rank_pos+FP_num
389
-
390
- #Compute precision for this example
391
- current_prec=rank_pos/rank[ii]
392
-
393
- #Compute interpolated AP and store gradients for relevant bg examples
394
- if (max_prec<=current_prec):
395
- max_prec=current_prec
396
- relevant_bg_grad += (bg_relations/rank[ii])
397
- else:
398
- relevant_bg_grad += (bg_relations/rank[ii])*(((1-max_prec)/(1-current_prec)))
399
-
400
- #Store fg gradients
401
- fg_grad[ii]=-(1-max_prec)
402
- prec[ii]=max_prec
403
-
404
- #aLRP with grad formulation fg gradient
405
- classification_grads[fg_labels]= fg_grad
406
- #aLRP with grad formulation bg gradient
407
- classification_grads[relevant_bg_labels]= relevant_bg_grad
408
-
409
- classification_grads /= fg_num
410
-
411
- cls_loss=1-prec.mean()
412
- ctx.save_for_backward(classification_grads)
413
-
414
- return cls_loss
415
-
416
- @staticmethod
417
- def backward(ctx, out_grad1):
418
- g1, =ctx.saved_tensors
419
- return g1*out_grad1, None, None
420
-
421
-
422
- class ComputeLoss:
423
- # Compute losses
424
- def __init__(self, model, autobalance=False):
425
- super(ComputeLoss, self).__init__()
426
- device = next(model.parameters()).device # get model device
427
- h = model.hyp # hyperparameters
428
-
429
- # Define criteria
430
- BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['cls_pw']], device=device))
431
- BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['obj_pw']], device=device))
432
-
433
- # Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
434
- self.cp, self.cn = smooth_BCE(eps=h.get('label_smoothing', 0.0)) # positive, negative BCE targets
435
-
436
- # Focal loss
437
- g = h['fl_gamma'] # focal loss gamma
438
- if g > 0:
439
- BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g)
440
-
441
- det = model.module.model[-1] if is_parallel(model) else model.model[-1] # Detect() module
442
- self.balance = {3: [4.0, 1.0, 0.4]}.get(det.nl, [4.0, 1.0, 0.25, 0.06, .02]) # P3-P7
443
- #self.balance = {3: [4.0, 1.0, 0.4]}.get(det.nl, [4.0, 1.0, 0.25, 0.1, .05]) # P3-P7
444
- #self.balance = {3: [4.0, 1.0, 0.4]}.get(det.nl, [4.0, 1.0, 0.5, 0.4, .1]) # P3-P7
445
- self.ssi = list(det.stride).index(16) if autobalance else 0 # stride 16 index
446
- self.BCEcls, self.BCEobj, self.gr, self.hyp, self.autobalance = BCEcls, BCEobj, model.gr, h, autobalance
447
- for k in 'na', 'nc', 'nl', 'anchors':
448
- setattr(self, k, getattr(det, k))
449
-
450
- def __call__(self, p, targets): # predictions, targets, model
451
- device = targets.device
452
- lcls, lbox, lobj = torch.zeros(1, device=device), torch.zeros(1, device=device), torch.zeros(1, device=device)
453
- tcls, tbox, indices, anchors = self.build_targets(p, targets) # targets
454
-
455
- # Losses
456
- for i, pi in enumerate(p): # layer index, layer predictions
457
- b, a, gj, gi = indices[i] # image, anchor, gridy, gridx
458
- tobj = torch.zeros_like(pi[..., 0], device=device) # target obj
459
-
460
- n = b.shape[0] # number of targets
461
- if n:
462
- ps = pi[b, a, gj, gi] # prediction subset corresponding to targets
463
-
464
- # Regression
465
- pxy = ps[:, :2].sigmoid() * 2. - 0.5
466
- pwh = (ps[:, 2:4].sigmoid() * 2) ** 2 * anchors[i]
467
- pbox = torch.cat((pxy, pwh), 1) # predicted box
468
- iou = bbox_iou(pbox.T, tbox[i], x1y1x2y2=False, CIoU=True) # iou(prediction, target)
469
- lbox += (1.0 - iou).mean() # iou loss
470
-
471
- # Objectness
472
- tobj[b, a, gj, gi] = (1.0 - self.gr) + self.gr * iou.detach().clamp(0).type(tobj.dtype) # iou ratio
473
-
474
- # Classification
475
- if self.nc > 1: # cls loss (only if multiple classes)
476
- t = torch.full_like(ps[:, 5:], self.cn, device=device) # targets
477
- t[range(n), tcls[i]] = self.cp
478
- #t[t==self.cp] = iou.detach().clamp(0).type(t.dtype)
479
- lcls += self.BCEcls(ps[:, 5:], t) # BCE
480
-
481
- # Append targets to text file
482
- # with open('targets.txt', 'a') as file:
483
- # [file.write('%11.5g ' * 4 % tuple(x) + '\n') for x in torch.cat((txy[i], twh[i]), 1)]
484
-
485
- obji = self.BCEobj(pi[..., 4], tobj)
486
- lobj += obji * self.balance[i] # obj loss
487
- if self.autobalance:
488
- self.balance[i] = self.balance[i] * 0.9999 + 0.0001 / obji.detach().item()
489
-
490
- if self.autobalance:
491
- self.balance = [x / self.balance[self.ssi] for x in self.balance]
492
- lbox *= self.hyp['box']
493
- lobj *= self.hyp['obj']
494
- lcls *= self.hyp['cls']
495
- bs = tobj.shape[0] # batch size
496
-
497
- loss = lbox + lobj + lcls
498
- return loss * bs, torch.cat((lbox, lobj, lcls, loss)).detach()
499
-
500
- def build_targets(self, p, targets):
501
- # Build targets for compute_loss(), input targets(image,class,x,y,w,h)
502
- na, nt = self.na, targets.shape[0] # number of anchors, targets
503
- tcls, tbox, indices, anch = [], [], [], []
504
- gain = torch.ones(7, device=targets.device).long() # normalized to gridspace gain
505
- ai = torch.arange(na, device=targets.device).float().view(na, 1).repeat(1, nt) # same as .repeat_interleave(nt)
506
- targets = torch.cat((targets.repeat(na, 1, 1), ai[:, :, None]), 2) # append anchor indices
507
-
508
- g = 0.5 # bias
509
- off = torch.tensor([[0, 0],
510
- [1, 0], [0, 1], [-1, 0], [0, -1], # j,k,l,m
511
- # [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm
512
- ], device=targets.device).float() * g # offsets
513
-
514
- for i in range(self.nl):
515
- anchors = self.anchors[i]
516
- gain[2:6] = torch.tensor(p[i].shape)[[3, 2, 3, 2]] # xyxy gain
517
-
518
- # Match targets to anchors
519
- t = targets * gain
520
- if nt:
521
- # Matches
522
- r = t[:, :, 4:6] / anchors[:, None] # wh ratio
523
- j = torch.max(r, 1. / r).max(2)[0] < self.hyp['anchor_t'] # compare
524
- # j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2))
525
- t = t[j] # filter
526
-
527
- # Offsets
528
- gxy = t[:, 2:4] # grid xy
529
- gxi = gain[[2, 3]] - gxy # inverse
530
- j, k = ((gxy % 1. < g) & (gxy > 1.)).T
531
- l, m = ((gxi % 1. < g) & (gxi > 1.)).T
532
- j = torch.stack((torch.ones_like(j), j, k, l, m))
533
- t = t.repeat((5, 1, 1))[j]
534
- offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j]
535
- else:
536
- t = targets[0]
537
- offsets = 0
538
-
539
- # Define
540
- b, c = t[:, :2].long().T # image, class
541
- gxy = t[:, 2:4] # grid xy
542
- gwh = t[:, 4:6] # grid wh
543
- gij = (gxy - offsets).long()
544
- gi, gj = gij.T # grid xy indices
545
-
546
- # Append
547
- a = t[:, 6].long() # anchor indices
548
- indices.append((b, a, gj.clamp_(0, gain[3] - 1), gi.clamp_(0, gain[2] - 1))) # image, anchor, grid indices
549
- tbox.append(torch.cat((gxy - gij, gwh), 1)) # box
550
- anch.append(anchors[a]) # anchors
551
- tcls.append(c) # class
552
-
553
- return tcls, tbox, indices, anch
554
-
555
-
556
- class ComputeLossOTA:
557
- # Compute losses
558
- def __init__(self, model, autobalance=False):
559
- super(ComputeLossOTA, self).__init__()
560
- device = next(model.parameters()).device # get model device
561
- h = model.hyp # hyperparameters
562
-
563
- # Define criteria
564
- BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['cls_pw']], device=device))
565
- BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['obj_pw']], device=device))
566
-
567
- # Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
568
- self.cp, self.cn = smooth_BCE(eps=h.get('label_smoothing', 0.0)) # positive, negative BCE targets
569
-
570
- # Focal loss
571
- g = h['fl_gamma'] # focal loss gamma
572
- if g > 0:
573
- BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g)
574
-
575
- det = model.module.model[-1] if is_parallel(model) else model.model[-1] # Detect() module
576
- self.balance = {3: [4.0, 1.0, 0.4]}.get(det.nl, [4.0, 1.0, 0.25, 0.06, .02]) # P3-P7
577
- self.ssi = list(det.stride).index(16) if autobalance else 0 # stride 16 index
578
- self.BCEcls, self.BCEobj, self.gr, self.hyp, self.autobalance = BCEcls, BCEobj, model.gr, h, autobalance
579
- for k in 'na', 'nc', 'nl', 'anchors', 'stride':
580
- setattr(self, k, getattr(det, k))
581
-
582
- def __call__(self, p, targets, imgs): # predictions, targets, model
583
- device = targets.device
584
- lcls, lbox, lobj = torch.zeros(1, device=device), torch.zeros(1, device=device), torch.zeros(1, device=device)
585
- bs, as_, gjs, gis, targets, anchors = self.build_targets(p, targets, imgs)
586
- pre_gen_gains = [torch.tensor(pp.shape, device=device)[[3, 2, 3, 2]] for pp in p]
587
-
588
-
589
- # Losses
590
- for i, pi in enumerate(p): # layer index, layer predictions
591
- b, a, gj, gi = bs[i], as_[i], gjs[i], gis[i] # image, anchor, gridy, gridx
592
- tobj = torch.zeros_like(pi[..., 0], device=device) # target obj
593
-
594
- n = b.shape[0] # number of targets
595
- if n:
596
- ps = pi[b, a, gj, gi] # prediction subset corresponding to targets
597
-
598
- # Regression
599
- grid = torch.stack([gi, gj], dim=1)
600
- pxy = ps[:, :2].sigmoid() * 2. - 0.5
601
- #pxy = ps[:, :2].sigmoid() * 3. - 1.
602
- pwh = (ps[:, 2:4].sigmoid() * 2) ** 2 * anchors[i]
603
- pbox = torch.cat((pxy, pwh), 1) # predicted box
604
- selected_tbox = targets[i][:, 2:6] * pre_gen_gains[i]
605
- selected_tbox[:, :2] -= grid
606
- iou = bbox_iou(pbox.T, selected_tbox, x1y1x2y2=False, CIoU=True) # iou(prediction, target)
607
- lbox += (1.0 - iou).mean() # iou loss
608
-
609
- # Objectness
610
- tobj[b, a, gj, gi] = (1.0 - self.gr) + self.gr * iou.detach().clamp(0).type(tobj.dtype) # iou ratio
611
-
612
- # Classification
613
- selected_tcls = targets[i][:, 1].long()
614
- if self.nc > 1: # cls loss (only if multiple classes)
615
- t = torch.full_like(ps[:, 5:], self.cn, device=device) # targets
616
- t[range(n), selected_tcls] = self.cp
617
- lcls += self.BCEcls(ps[:, 5:], t) # BCE
618
-
619
- # Append targets to text file
620
- # with open('targets.txt', 'a') as file:
621
- # [file.write('%11.5g ' * 4 % tuple(x) + '\n') for x in torch.cat((txy[i], twh[i]), 1)]
622
-
623
- obji = self.BCEobj(pi[..., 4], tobj)
624
- lobj += obji * self.balance[i] # obj loss
625
- if self.autobalance:
626
- self.balance[i] = self.balance[i] * 0.9999 + 0.0001 / obji.detach().item()
627
-
628
- if self.autobalance:
629
- self.balance = [x / self.balance[self.ssi] for x in self.balance]
630
- lbox *= self.hyp['box']
631
- lobj *= self.hyp['obj']
632
- lcls *= self.hyp['cls']
633
- bs = tobj.shape[0] # batch size
634
-
635
- loss = lbox + lobj + lcls
636
- return loss * bs, torch.cat((lbox, lobj, lcls, loss)).detach()
637
-
638
- def build_targets(self, p, targets, imgs):
639
-
640
- #indices, anch = self.find_positive(p, targets)
641
- indices, anch = self.find_3_positive(p, targets)
642
- #indices, anch = self.find_4_positive(p, targets)
643
- #indices, anch = self.find_5_positive(p, targets)
644
- #indices, anch = self.find_9_positive(p, targets)
645
- device = torch.device(targets.device)
646
- matching_bs = [[] for pp in p]
647
- matching_as = [[] for pp in p]
648
- matching_gjs = [[] for pp in p]
649
- matching_gis = [[] for pp in p]
650
- matching_targets = [[] for pp in p]
651
- matching_anchs = [[] for pp in p]
652
-
653
- nl = len(p)
654
-
655
- for batch_idx in range(p[0].shape[0]):
656
-
657
- b_idx = targets[:, 0]==batch_idx
658
- this_target = targets[b_idx]
659
- if this_target.shape[0] == 0:
660
- continue
661
-
662
- txywh = this_target[:, 2:6] * imgs[batch_idx].shape[1]
663
- txyxy = xywh2xyxy(txywh)
664
-
665
- pxyxys = []
666
- p_cls = []
667
- p_obj = []
668
- from_which_layer = []
669
- all_b = []
670
- all_a = []
671
- all_gj = []
672
- all_gi = []
673
- all_anch = []
674
-
675
- for i, pi in enumerate(p):
676
-
677
- b, a, gj, gi = indices[i]
678
- idx = (b == batch_idx)
679
- b, a, gj, gi = b[idx], a[idx], gj[idx], gi[idx]
680
- all_b.append(b)
681
- all_a.append(a)
682
- all_gj.append(gj)
683
- all_gi.append(gi)
684
- all_anch.append(anch[i][idx])
685
- from_which_layer.append((torch.ones(size=(len(b),)) * i).to(device))
686
-
687
- fg_pred = pi[b, a, gj, gi]
688
- p_obj.append(fg_pred[:, 4:5])
689
- p_cls.append(fg_pred[:, 5:])
690
-
691
- grid = torch.stack([gi, gj], dim=1)
692
- pxy = (fg_pred[:, :2].sigmoid() * 2. - 0.5 + grid) * self.stride[i] #/ 8.
693
- #pxy = (fg_pred[:, :2].sigmoid() * 3. - 1. + grid) * self.stride[i]
694
- pwh = (fg_pred[:, 2:4].sigmoid() * 2) ** 2 * anch[i][idx] * self.stride[i] #/ 8.
695
- pxywh = torch.cat([pxy, pwh], dim=-1)
696
- pxyxy = xywh2xyxy(pxywh)
697
- pxyxys.append(pxyxy)
698
-
699
- pxyxys = torch.cat(pxyxys, dim=0)
700
- if pxyxys.shape[0] == 0:
701
- continue
702
- p_obj = torch.cat(p_obj, dim=0)
703
- p_cls = torch.cat(p_cls, dim=0)
704
- from_which_layer = torch.cat(from_which_layer, dim=0)
705
- all_b = torch.cat(all_b, dim=0)
706
- all_a = torch.cat(all_a, dim=0)
707
- all_gj = torch.cat(all_gj, dim=0)
708
- all_gi = torch.cat(all_gi, dim=0)
709
- all_anch = torch.cat(all_anch, dim=0)
710
-
711
- pair_wise_iou = box_iou(txyxy, pxyxys)
712
-
713
- pair_wise_iou_loss = -torch.log(pair_wise_iou + 1e-8)
714
-
715
- top_k, _ = torch.topk(pair_wise_iou, min(10, pair_wise_iou.shape[1]), dim=1)
716
- dynamic_ks = torch.clamp(top_k.sum(1).int(), min=1)
717
-
718
- gt_cls_per_image = (
719
- F.one_hot(this_target[:, 1].to(torch.int64), self.nc)
720
- .float()
721
- .unsqueeze(1)
722
- .repeat(1, pxyxys.shape[0], 1)
723
- )
724
-
725
- num_gt = this_target.shape[0]
726
- cls_preds_ = (
727
- p_cls.float().unsqueeze(0).repeat(num_gt, 1, 1).sigmoid_()
728
- * p_obj.unsqueeze(0).repeat(num_gt, 1, 1).sigmoid_()
729
- )
730
-
731
- y = cls_preds_.sqrt_()
732
- pair_wise_cls_loss = F.binary_cross_entropy_with_logits(
733
- torch.log(y/(1-y)) , gt_cls_per_image, reduction="none"
734
- ).sum(-1)
735
- del cls_preds_
736
-
737
- cost = (
738
- pair_wise_cls_loss
739
- + 3.0 * pair_wise_iou_loss
740
- )
741
-
742
- matching_matrix = torch.zeros_like(cost, device=device)
743
-
744
- for gt_idx in range(num_gt):
745
- _, pos_idx = torch.topk(
746
- cost[gt_idx], k=dynamic_ks[gt_idx].item(), largest=False
747
- )
748
- matching_matrix[gt_idx][pos_idx] = 1.0
749
-
750
- del top_k, dynamic_ks
751
- anchor_matching_gt = matching_matrix.sum(0)
752
- if (anchor_matching_gt > 1).sum() > 0:
753
- _, cost_argmin = torch.min(cost[:, anchor_matching_gt > 1], dim=0)
754
- matching_matrix[:, anchor_matching_gt > 1] *= 0.0
755
- matching_matrix[cost_argmin, anchor_matching_gt > 1] = 1.0
756
- fg_mask_inboxes = (matching_matrix.sum(0) > 0.0).to(device)
757
- matched_gt_inds = matching_matrix[:, fg_mask_inboxes].argmax(0)
758
-
759
- from_which_layer = from_which_layer[fg_mask_inboxes]
760
- all_b = all_b[fg_mask_inboxes]
761
- all_a = all_a[fg_mask_inboxes]
762
- all_gj = all_gj[fg_mask_inboxes]
763
- all_gi = all_gi[fg_mask_inboxes]
764
- all_anch = all_anch[fg_mask_inboxes]
765
-
766
- this_target = this_target[matched_gt_inds]
767
-
768
- for i in range(nl):
769
- layer_idx = from_which_layer == i
770
- matching_bs[i].append(all_b[layer_idx])
771
- matching_as[i].append(all_a[layer_idx])
772
- matching_gjs[i].append(all_gj[layer_idx])
773
- matching_gis[i].append(all_gi[layer_idx])
774
- matching_targets[i].append(this_target[layer_idx])
775
- matching_anchs[i].append(all_anch[layer_idx])
776
-
777
- for i in range(nl):
778
- if matching_targets[i] != []:
779
- matching_bs[i] = torch.cat(matching_bs[i], dim=0)
780
- matching_as[i] = torch.cat(matching_as[i], dim=0)
781
- matching_gjs[i] = torch.cat(matching_gjs[i], dim=0)
782
- matching_gis[i] = torch.cat(matching_gis[i], dim=0)
783
- matching_targets[i] = torch.cat(matching_targets[i], dim=0)
784
- matching_anchs[i] = torch.cat(matching_anchs[i], dim=0)
785
- else:
786
- matching_bs[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
787
- matching_as[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
788
- matching_gjs[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
789
- matching_gis[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
790
- matching_targets[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
791
- matching_anchs[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
792
-
793
- return matching_bs, matching_as, matching_gjs, matching_gis, matching_targets, matching_anchs
794
-
795
- def find_3_positive(self, p, targets):
796
- # Build targets for compute_loss(), input targets(image,class,x,y,w,h)
797
- na, nt = self.na, targets.shape[0] # number of anchors, targets
798
- indices, anch = [], []
799
- gain = torch.ones(7, device=targets.device).long() # normalized to gridspace gain
800
- ai = torch.arange(na, device=targets.device).float().view(na, 1).repeat(1, nt) # same as .repeat_interleave(nt)
801
- targets = torch.cat((targets.repeat(na, 1, 1), ai[:, :, None]), 2) # append anchor indices
802
-
803
- g = 0.5 # bias
804
- off = torch.tensor([[0, 0],
805
- [1, 0], [0, 1], [-1, 0], [0, -1], # j,k,l,m
806
- # [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm
807
- ], device=targets.device).float() * g # offsets
808
-
809
- for i in range(self.nl):
810
- anchors = self.anchors[i]
811
- gain[2:6] = torch.tensor(p[i].shape)[[3, 2, 3, 2]] # xyxy gain
812
-
813
- # Match targets to anchors
814
- t = targets * gain
815
- if nt:
816
- # Matches
817
- r = t[:, :, 4:6] / anchors[:, None] # wh ratio
818
- j = torch.max(r, 1. / r).max(2)[0] < self.hyp['anchor_t'] # compare
819
- # j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2))
820
- t = t[j] # filter
821
-
822
- # Offsets
823
- gxy = t[:, 2:4] # grid xy
824
- gxi = gain[[2, 3]] - gxy # inverse
825
- j, k = ((gxy % 1. < g) & (gxy > 1.)).T
826
- l, m = ((gxi % 1. < g) & (gxi > 1.)).T
827
- j = torch.stack((torch.ones_like(j), j, k, l, m))
828
- t = t.repeat((5, 1, 1))[j]
829
- offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j]
830
- else:
831
- t = targets[0]
832
- offsets = 0
833
-
834
- # Define
835
- b, c = t[:, :2].long().T # image, class
836
- gxy = t[:, 2:4] # grid xy
837
- gwh = t[:, 4:6] # grid wh
838
- gij = (gxy - offsets).long()
839
- gi, gj = gij.T # grid xy indices
840
-
841
- # Append
842
- a = t[:, 6].long() # anchor indices
843
- indices.append((b, a, gj.clamp_(0, gain[3] - 1), gi.clamp_(0, gain[2] - 1))) # image, anchor, grid indices
844
- anch.append(anchors[a]) # anchors
845
-
846
- return indices, anch
847
-
848
-
849
- class ComputeLossBinOTA:
850
- # Compute losses
851
- def __init__(self, model, autobalance=False):
852
- super(ComputeLossBinOTA, self).__init__()
853
- device = next(model.parameters()).device # get model device
854
- h = model.hyp # hyperparameters
855
-
856
- # Define criteria
857
- BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['cls_pw']], device=device))
858
- BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['obj_pw']], device=device))
859
- #MSEangle = nn.MSELoss().to(device)
860
-
861
- # Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
862
- self.cp, self.cn = smooth_BCE(eps=h.get('label_smoothing', 0.0)) # positive, negative BCE targets
863
-
864
- # Focal loss
865
- g = h['fl_gamma'] # focal loss gamma
866
- if g > 0:
867
- BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g)
868
-
869
- det = model.module.model[-1] if is_parallel(model) else model.model[-1] # Detect() module
870
- self.balance = {3: [4.0, 1.0, 0.4]}.get(det.nl, [4.0, 1.0, 0.25, 0.06, .02]) # P3-P7
871
- self.ssi = list(det.stride).index(16) if autobalance else 0 # stride 16 index
872
- self.BCEcls, self.BCEobj, self.gr, self.hyp, self.autobalance = BCEcls, BCEobj, model.gr, h, autobalance
873
- for k in 'na', 'nc', 'nl', 'anchors', 'stride', 'bin_count':
874
- setattr(self, k, getattr(det, k))
875
-
876
- #xy_bin_sigmoid = SigmoidBin(bin_count=11, min=-0.5, max=1.5, use_loss_regression=False).to(device)
877
- wh_bin_sigmoid = SigmoidBin(bin_count=self.bin_count, min=0.0, max=4.0, use_loss_regression=False).to(device)
878
- #angle_bin_sigmoid = SigmoidBin(bin_count=31, min=-1.1, max=1.1, use_loss_regression=False).to(device)
879
- self.wh_bin_sigmoid = wh_bin_sigmoid
880
-
881
- def __call__(self, p, targets, imgs): # predictions, targets, model
882
- device = targets.device
883
- lcls, lbox, lobj = torch.zeros(1, device=device), torch.zeros(1, device=device), torch.zeros(1, device=device)
884
- bs, as_, gjs, gis, targets, anchors = self.build_targets(p, targets, imgs)
885
- pre_gen_gains = [torch.tensor(pp.shape, device=device)[[3, 2, 3, 2]] for pp in p]
886
-
887
-
888
- # Losses
889
- for i, pi in enumerate(p): # layer index, layer predictions
890
- b, a, gj, gi = bs[i], as_[i], gjs[i], gis[i] # image, anchor, gridy, gridx
891
- tobj = torch.zeros_like(pi[..., 0], device=device) # target obj
892
-
893
- obj_idx = self.wh_bin_sigmoid.get_length()*2 + 2 # x,y, w-bce, h-bce # xy_bin_sigmoid.get_length()*2
894
-
895
- n = b.shape[0] # number of targets
896
- if n:
897
- ps = pi[b, a, gj, gi] # prediction subset corresponding to targets
898
-
899
- # Regression
900
- grid = torch.stack([gi, gj], dim=1)
901
- selected_tbox = targets[i][:, 2:6] * pre_gen_gains[i]
902
- selected_tbox[:, :2] -= grid
903
-
904
- #pxy = ps[:, :2].sigmoid() * 2. - 0.5
905
- ##pxy = ps[:, :2].sigmoid() * 3. - 1.
906
- #pwh = (ps[:, 2:4].sigmoid() * 2) ** 2 * anchors[i]
907
- #pbox = torch.cat((pxy, pwh), 1) # predicted box
908
-
909
- #x_loss, px = xy_bin_sigmoid.training_loss(ps[..., 0:12], tbox[i][..., 0])
910
- #y_loss, py = xy_bin_sigmoid.training_loss(ps[..., 12:24], tbox[i][..., 1])
911
- w_loss, pw = self.wh_bin_sigmoid.training_loss(ps[..., 2:(3+self.bin_count)], selected_tbox[..., 2] / anchors[i][..., 0])
912
- h_loss, ph = self.wh_bin_sigmoid.training_loss(ps[..., (3+self.bin_count):obj_idx], selected_tbox[..., 3] / anchors[i][..., 1])
913
-
914
- pw *= anchors[i][..., 0]
915
- ph *= anchors[i][..., 1]
916
-
917
- px = ps[:, 0].sigmoid() * 2. - 0.5
918
- py = ps[:, 1].sigmoid() * 2. - 0.5
919
-
920
- lbox += w_loss + h_loss # + x_loss + y_loss
921
-
922
- #print(f"\n px = {px.shape}, py = {py.shape}, pw = {pw.shape}, ph = {ph.shape} \n")
923
-
924
- pbox = torch.cat((px.unsqueeze(1), py.unsqueeze(1), pw.unsqueeze(1), ph.unsqueeze(1)), 1).to(device) # predicted box
925
-
926
-
927
-
928
-
929
- iou = bbox_iou(pbox.T, selected_tbox, x1y1x2y2=False, CIoU=True) # iou(prediction, target)
930
- lbox += (1.0 - iou).mean() # iou loss
931
-
932
- # Objectness
933
- tobj[b, a, gj, gi] = (1.0 - self.gr) + self.gr * iou.detach().clamp(0).type(tobj.dtype) # iou ratio
934
-
935
- # Classification
936
- selected_tcls = targets[i][:, 1].long()
937
- if self.nc > 1: # cls loss (only if multiple classes)
938
- t = torch.full_like(ps[:, (1+obj_idx):], self.cn, device=device) # targets
939
- t[range(n), selected_tcls] = self.cp
940
- lcls += self.BCEcls(ps[:, (1+obj_idx):], t) # BCE
941
-
942
- # Append targets to text file
943
- # with open('targets.txt', 'a') as file:
944
- # [file.write('%11.5g ' * 4 % tuple(x) + '\n') for x in torch.cat((txy[i], twh[i]), 1)]
945
-
946
- obji = self.BCEobj(pi[..., obj_idx], tobj)
947
- lobj += obji * self.balance[i] # obj loss
948
- if self.autobalance:
949
- self.balance[i] = self.balance[i] * 0.9999 + 0.0001 / obji.detach().item()
950
-
951
- if self.autobalance:
952
- self.balance = [x / self.balance[self.ssi] for x in self.balance]
953
- lbox *= self.hyp['box']
954
- lobj *= self.hyp['obj']
955
- lcls *= self.hyp['cls']
956
- bs = tobj.shape[0] # batch size
957
-
958
- loss = lbox + lobj + lcls
959
- return loss * bs, torch.cat((lbox, lobj, lcls, loss)).detach()
960
-
961
- def build_targets(self, p, targets, imgs):
962
-
963
- #indices, anch = self.find_positive(p, targets)
964
- indices, anch = self.find_3_positive(p, targets)
965
- #indices, anch = self.find_4_positive(p, targets)
966
- #indices, anch = self.find_5_positive(p, targets)
967
- #indices, anch = self.find_9_positive(p, targets)
968
-
969
- matching_bs = [[] for pp in p]
970
- matching_as = [[] for pp in p]
971
- matching_gjs = [[] for pp in p]
972
- matching_gis = [[] for pp in p]
973
- matching_targets = [[] for pp in p]
974
- matching_anchs = [[] for pp in p]
975
-
976
- nl = len(p)
977
-
978
- for batch_idx in range(p[0].shape[0]):
979
-
980
- b_idx = targets[:, 0]==batch_idx
981
- this_target = targets[b_idx]
982
- if this_target.shape[0] == 0:
983
- continue
984
-
985
- txywh = this_target[:, 2:6] * imgs[batch_idx].shape[1]
986
- txyxy = xywh2xyxy(txywh)
987
-
988
- pxyxys = []
989
- p_cls = []
990
- p_obj = []
991
- from_which_layer = []
992
- all_b = []
993
- all_a = []
994
- all_gj = []
995
- all_gi = []
996
- all_anch = []
997
-
998
- for i, pi in enumerate(p):
999
-
1000
- obj_idx = self.wh_bin_sigmoid.get_length()*2 + 2
1001
-
1002
- b, a, gj, gi = indices[i]
1003
- idx = (b == batch_idx)
1004
- b, a, gj, gi = b[idx], a[idx], gj[idx], gi[idx]
1005
- all_b.append(b)
1006
- all_a.append(a)
1007
- all_gj.append(gj)
1008
- all_gi.append(gi)
1009
- all_anch.append(anch[i][idx])
1010
- from_which_layer.append(torch.ones(size=(len(b),)) * i)
1011
-
1012
- fg_pred = pi[b, a, gj, gi]
1013
- p_obj.append(fg_pred[:, obj_idx:(obj_idx+1)])
1014
- p_cls.append(fg_pred[:, (obj_idx+1):])
1015
-
1016
- grid = torch.stack([gi, gj], dim=1)
1017
- pxy = (fg_pred[:, :2].sigmoid() * 2. - 0.5 + grid) * self.stride[i] #/ 8.
1018
- #pwh = (fg_pred[:, 2:4].sigmoid() * 2) ** 2 * anch[i][idx] * self.stride[i] #/ 8.
1019
- pw = self.wh_bin_sigmoid.forward(fg_pred[..., 2:(3+self.bin_count)].sigmoid()) * anch[i][idx][:, 0] * self.stride[i]
1020
- ph = self.wh_bin_sigmoid.forward(fg_pred[..., (3+self.bin_count):obj_idx].sigmoid()) * anch[i][idx][:, 1] * self.stride[i]
1021
-
1022
- pxywh = torch.cat([pxy, pw.unsqueeze(1), ph.unsqueeze(1)], dim=-1)
1023
- pxyxy = xywh2xyxy(pxywh)
1024
- pxyxys.append(pxyxy)
1025
-
1026
- pxyxys = torch.cat(pxyxys, dim=0)
1027
- if pxyxys.shape[0] == 0:
1028
- continue
1029
- p_obj = torch.cat(p_obj, dim=0)
1030
- p_cls = torch.cat(p_cls, dim=0)
1031
- from_which_layer = torch.cat(from_which_layer, dim=0)
1032
- all_b = torch.cat(all_b, dim=0)
1033
- all_a = torch.cat(all_a, dim=0)
1034
- all_gj = torch.cat(all_gj, dim=0)
1035
- all_gi = torch.cat(all_gi, dim=0)
1036
- all_anch = torch.cat(all_anch, dim=0)
1037
-
1038
- pair_wise_iou = box_iou(txyxy, pxyxys)
1039
-
1040
- pair_wise_iou_loss = -torch.log(pair_wise_iou + 1e-8)
1041
-
1042
- top_k, _ = torch.topk(pair_wise_iou, min(10, pair_wise_iou.shape[1]), dim=1)
1043
- dynamic_ks = torch.clamp(top_k.sum(1).int(), min=1)
1044
-
1045
- gt_cls_per_image = (
1046
- F.one_hot(this_target[:, 1].to(torch.int64), self.nc)
1047
- .float()
1048
- .unsqueeze(1)
1049
- .repeat(1, pxyxys.shape[0], 1)
1050
- )
1051
-
1052
- num_gt = this_target.shape[0]
1053
- cls_preds_ = (
1054
- p_cls.float().unsqueeze(0).repeat(num_gt, 1, 1).sigmoid_()
1055
- * p_obj.unsqueeze(0).repeat(num_gt, 1, 1).sigmoid_()
1056
- )
1057
-
1058
- y = cls_preds_.sqrt_()
1059
- pair_wise_cls_loss = F.binary_cross_entropy_with_logits(
1060
- torch.log(y/(1-y)) , gt_cls_per_image, reduction="none"
1061
- ).sum(-1)
1062
- del cls_preds_
1063
-
1064
- cost = (
1065
- pair_wise_cls_loss
1066
- + 3.0 * pair_wise_iou_loss
1067
- )
1068
-
1069
- matching_matrix = torch.zeros_like(cost)
1070
-
1071
- for gt_idx in range(num_gt):
1072
- _, pos_idx = torch.topk(
1073
- cost[gt_idx], k=dynamic_ks[gt_idx].item(), largest=False
1074
- )
1075
- matching_matrix[gt_idx][pos_idx] = 1.0
1076
-
1077
- del top_k, dynamic_ks
1078
- anchor_matching_gt = matching_matrix.sum(0)
1079
- if (anchor_matching_gt > 1).sum() > 0:
1080
- _, cost_argmin = torch.min(cost[:, anchor_matching_gt > 1], dim=0)
1081
- matching_matrix[:, anchor_matching_gt > 1] *= 0.0
1082
- matching_matrix[cost_argmin, anchor_matching_gt > 1] = 1.0
1083
- fg_mask_inboxes = matching_matrix.sum(0) > 0.0
1084
- matched_gt_inds = matching_matrix[:, fg_mask_inboxes].argmax(0)
1085
-
1086
- from_which_layer = from_which_layer[fg_mask_inboxes]
1087
- all_b = all_b[fg_mask_inboxes]
1088
- all_a = all_a[fg_mask_inboxes]
1089
- all_gj = all_gj[fg_mask_inboxes]
1090
- all_gi = all_gi[fg_mask_inboxes]
1091
- all_anch = all_anch[fg_mask_inboxes]
1092
-
1093
- this_target = this_target[matched_gt_inds]
1094
-
1095
- for i in range(nl):
1096
- layer_idx = from_which_layer == i
1097
- matching_bs[i].append(all_b[layer_idx])
1098
- matching_as[i].append(all_a[layer_idx])
1099
- matching_gjs[i].append(all_gj[layer_idx])
1100
- matching_gis[i].append(all_gi[layer_idx])
1101
- matching_targets[i].append(this_target[layer_idx])
1102
- matching_anchs[i].append(all_anch[layer_idx])
1103
-
1104
- for i in range(nl):
1105
- if matching_targets[i] != []:
1106
- matching_bs[i] = torch.cat(matching_bs[i], dim=0)
1107
- matching_as[i] = torch.cat(matching_as[i], dim=0)
1108
- matching_gjs[i] = torch.cat(matching_gjs[i], dim=0)
1109
- matching_gis[i] = torch.cat(matching_gis[i], dim=0)
1110
- matching_targets[i] = torch.cat(matching_targets[i], dim=0)
1111
- matching_anchs[i] = torch.cat(matching_anchs[i], dim=0)
1112
- else:
1113
- matching_bs[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
1114
- matching_as[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
1115
- matching_gjs[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
1116
- matching_gis[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
1117
- matching_targets[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
1118
- matching_anchs[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
1119
-
1120
- return matching_bs, matching_as, matching_gjs, matching_gis, matching_targets, matching_anchs
1121
-
1122
- def find_3_positive(self, p, targets):
1123
- # Build targets for compute_loss(), input targets(image,class,x,y,w,h)
1124
- na, nt = self.na, targets.shape[0] # number of anchors, targets
1125
- indices, anch = [], []
1126
- gain = torch.ones(7, device=targets.device).long() # normalized to gridspace gain
1127
- ai = torch.arange(na, device=targets.device).float().view(na, 1).repeat(1, nt) # same as .repeat_interleave(nt)
1128
- targets = torch.cat((targets.repeat(na, 1, 1), ai[:, :, None]), 2) # append anchor indices
1129
-
1130
- g = 0.5 # bias
1131
- off = torch.tensor([[0, 0],
1132
- [1, 0], [0, 1], [-1, 0], [0, -1], # j,k,l,m
1133
- # [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm
1134
- ], device=targets.device).float() * g # offsets
1135
-
1136
- for i in range(self.nl):
1137
- anchors = self.anchors[i]
1138
- gain[2:6] = torch.tensor(p[i].shape)[[3, 2, 3, 2]] # xyxy gain
1139
-
1140
- # Match targets to anchors
1141
- t = targets * gain
1142
- if nt:
1143
- # Matches
1144
- r = t[:, :, 4:6] / anchors[:, None] # wh ratio
1145
- j = torch.max(r, 1. / r).max(2)[0] < self.hyp['anchor_t'] # compare
1146
- # j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2))
1147
- t = t[j] # filter
1148
-
1149
- # Offsets
1150
- gxy = t[:, 2:4] # grid xy
1151
- gxi = gain[[2, 3]] - gxy # inverse
1152
- j, k = ((gxy % 1. < g) & (gxy > 1.)).T
1153
- l, m = ((gxi % 1. < g) & (gxi > 1.)).T
1154
- j = torch.stack((torch.ones_like(j), j, k, l, m))
1155
- t = t.repeat((5, 1, 1))[j]
1156
- offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j]
1157
- else:
1158
- t = targets[0]
1159
- offsets = 0
1160
-
1161
- # Define
1162
- b, c = t[:, :2].long().T # image, class
1163
- gxy = t[:, 2:4] # grid xy
1164
- gwh = t[:, 4:6] # grid wh
1165
- gij = (gxy - offsets).long()
1166
- gi, gj = gij.T # grid xy indices
1167
-
1168
- # Append
1169
- a = t[:, 6].long() # anchor indices
1170
- indices.append((b, a, gj.clamp_(0, gain[3] - 1), gi.clamp_(0, gain[2] - 1))) # image, anchor, grid indices
1171
- anch.append(anchors[a]) # anchors
1172
-
1173
- return indices, anch
1174
-
1175
-
1176
- class ComputeLossAuxOTA:
1177
- # Compute losses
1178
- def __init__(self, model, autobalance=False):
1179
- super(ComputeLossAuxOTA, self).__init__()
1180
- device = next(model.parameters()).device # get model device
1181
- h = model.hyp # hyperparameters
1182
-
1183
- # Define criteria
1184
- BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['cls_pw']], device=device))
1185
- BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['obj_pw']], device=device))
1186
-
1187
- # Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
1188
- self.cp, self.cn = smooth_BCE(eps=h.get('label_smoothing', 0.0)) # positive, negative BCE targets
1189
-
1190
- # Focal loss
1191
- g = h['fl_gamma'] # focal loss gamma
1192
- if g > 0:
1193
- BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g)
1194
-
1195
- det = model.module.model[-1] if is_parallel(model) else model.model[-1] # Detect() module
1196
- self.balance = {3: [4.0, 1.0, 0.4]}.get(det.nl, [4.0, 1.0, 0.25, 0.06, .02]) # P3-P7
1197
- self.ssi = list(det.stride).index(16) if autobalance else 0 # stride 16 index
1198
- self.BCEcls, self.BCEobj, self.gr, self.hyp, self.autobalance = BCEcls, BCEobj, model.gr, h, autobalance
1199
- for k in 'na', 'nc', 'nl', 'anchors', 'stride':
1200
- setattr(self, k, getattr(det, k))
1201
-
1202
- def __call__(self, p, targets, imgs): # predictions, targets, model
1203
- device = targets.device
1204
- lcls, lbox, lobj = torch.zeros(1, device=device), torch.zeros(1, device=device), torch.zeros(1, device=device)
1205
- bs_aux, as_aux_, gjs_aux, gis_aux, targets_aux, anchors_aux = self.build_targets2(p[:self.nl], targets, imgs)
1206
- bs, as_, gjs, gis, targets, anchors = self.build_targets(p[:self.nl], targets, imgs)
1207
- pre_gen_gains_aux = [torch.tensor(pp.shape, device=device)[[3, 2, 3, 2]] for pp in p[:self.nl]]
1208
- pre_gen_gains = [torch.tensor(pp.shape, device=device)[[3, 2, 3, 2]] for pp in p[:self.nl]]
1209
-
1210
-
1211
- # Losses
1212
- for i in range(self.nl): # layer index, layer predictions
1213
- pi = p[i]
1214
- pi_aux = p[i+self.nl]
1215
- b, a, gj, gi = bs[i], as_[i], gjs[i], gis[i] # image, anchor, gridy, gridx
1216
- b_aux, a_aux, gj_aux, gi_aux = bs_aux[i], as_aux_[i], gjs_aux[i], gis_aux[i] # image, anchor, gridy, gridx
1217
- tobj = torch.zeros_like(pi[..., 0], device=device) # target obj
1218
- tobj_aux = torch.zeros_like(pi_aux[..., 0], device=device) # target obj
1219
-
1220
- n = b.shape[0] # number of targets
1221
- if n:
1222
- ps = pi[b, a, gj, gi] # prediction subset corresponding to targets
1223
-
1224
- # Regression
1225
- grid = torch.stack([gi, gj], dim=1)
1226
- pxy = ps[:, :2].sigmoid() * 2. - 0.5
1227
- pwh = (ps[:, 2:4].sigmoid() * 2) ** 2 * anchors[i]
1228
- pbox = torch.cat((pxy, pwh), 1) # predicted box
1229
- selected_tbox = targets[i][:, 2:6] * pre_gen_gains[i]
1230
- selected_tbox[:, :2] -= grid
1231
- iou = bbox_iou(pbox.T, selected_tbox, x1y1x2y2=False, CIoU=True) # iou(prediction, target)
1232
- lbox += (1.0 - iou).mean() # iou loss
1233
-
1234
- # Objectness
1235
- tobj[b, a, gj, gi] = (1.0 - self.gr) + self.gr * iou.detach().clamp(0).type(tobj.dtype) # iou ratio
1236
-
1237
- # Classification
1238
- selected_tcls = targets[i][:, 1].long()
1239
- if self.nc > 1: # cls loss (only if multiple classes)
1240
- t = torch.full_like(ps[:, 5:], self.cn, device=device) # targets
1241
- t[range(n), selected_tcls] = self.cp
1242
- lcls += self.BCEcls(ps[:, 5:], t) # BCE
1243
-
1244
- # Append targets to text file
1245
- # with open('targets.txt', 'a') as file:
1246
- # [file.write('%11.5g ' * 4 % tuple(x) + '\n') for x in torch.cat((txy[i], twh[i]), 1)]
1247
-
1248
- n_aux = b_aux.shape[0] # number of targets
1249
- if n_aux:
1250
- ps_aux = pi_aux[b_aux, a_aux, gj_aux, gi_aux] # prediction subset corresponding to targets
1251
- grid_aux = torch.stack([gi_aux, gj_aux], dim=1)
1252
- pxy_aux = ps_aux[:, :2].sigmoid() * 2. - 0.5
1253
- #pxy_aux = ps_aux[:, :2].sigmoid() * 3. - 1.
1254
- pwh_aux = (ps_aux[:, 2:4].sigmoid() * 2) ** 2 * anchors_aux[i]
1255
- pbox_aux = torch.cat((pxy_aux, pwh_aux), 1) # predicted box
1256
- selected_tbox_aux = targets_aux[i][:, 2:6] * pre_gen_gains_aux[i]
1257
- selected_tbox_aux[:, :2] -= grid_aux
1258
- iou_aux = bbox_iou(pbox_aux.T, selected_tbox_aux, x1y1x2y2=False, CIoU=True) # iou(prediction, target)
1259
- lbox += 0.25 * (1.0 - iou_aux).mean() # iou loss
1260
-
1261
- # Objectness
1262
- tobj_aux[b_aux, a_aux, gj_aux, gi_aux] = (1.0 - self.gr) + self.gr * iou_aux.detach().clamp(0).type(tobj_aux.dtype) # iou ratio
1263
-
1264
- # Classification
1265
- selected_tcls_aux = targets_aux[i][:, 1].long()
1266
- if self.nc > 1: # cls loss (only if multiple classes)
1267
- t_aux = torch.full_like(ps_aux[:, 5:], self.cn, device=device) # targets
1268
- t_aux[range(n_aux), selected_tcls_aux] = self.cp
1269
- lcls += 0.25 * self.BCEcls(ps_aux[:, 5:], t_aux) # BCE
1270
-
1271
- obji = self.BCEobj(pi[..., 4], tobj)
1272
- obji_aux = self.BCEobj(pi_aux[..., 4], tobj_aux)
1273
- lobj += obji * self.balance[i] + 0.25 * obji_aux * self.balance[i] # obj loss
1274
- if self.autobalance:
1275
- self.balance[i] = self.balance[i] * 0.9999 + 0.0001 / obji.detach().item()
1276
-
1277
- if self.autobalance:
1278
- self.balance = [x / self.balance[self.ssi] for x in self.balance]
1279
- lbox *= self.hyp['box']
1280
- lobj *= self.hyp['obj']
1281
- lcls *= self.hyp['cls']
1282
- bs = tobj.shape[0] # batch size
1283
-
1284
- loss = lbox + lobj + lcls
1285
- return loss * bs, torch.cat((lbox, lobj, lcls, loss)).detach()
1286
-
1287
- def build_targets(self, p, targets, imgs):
1288
-
1289
- indices, anch = self.find_3_positive(p, targets)
1290
-
1291
- matching_bs = [[] for pp in p]
1292
- matching_as = [[] for pp in p]
1293
- matching_gjs = [[] for pp in p]
1294
- matching_gis = [[] for pp in p]
1295
- matching_targets = [[] for pp in p]
1296
- matching_anchs = [[] for pp in p]
1297
-
1298
- nl = len(p)
1299
-
1300
- for batch_idx in range(p[0].shape[0]):
1301
-
1302
- b_idx = targets[:, 0]==batch_idx
1303
- this_target = targets[b_idx]
1304
- if this_target.shape[0] == 0:
1305
- continue
1306
-
1307
- txywh = this_target[:, 2:6] * imgs[batch_idx].shape[1]
1308
- txyxy = xywh2xyxy(txywh)
1309
-
1310
- pxyxys = []
1311
- p_cls = []
1312
- p_obj = []
1313
- from_which_layer = []
1314
- all_b = []
1315
- all_a = []
1316
- all_gj = []
1317
- all_gi = []
1318
- all_anch = []
1319
-
1320
- for i, pi in enumerate(p):
1321
-
1322
- b, a, gj, gi = indices[i]
1323
- idx = (b == batch_idx)
1324
- b, a, gj, gi = b[idx], a[idx], gj[idx], gi[idx]
1325
- all_b.append(b)
1326
- all_a.append(a)
1327
- all_gj.append(gj)
1328
- all_gi.append(gi)
1329
- all_anch.append(anch[i][idx])
1330
- from_which_layer.append(torch.ones(size=(len(b),)) * i)
1331
-
1332
- fg_pred = pi[b, a, gj, gi]
1333
- p_obj.append(fg_pred[:, 4:5])
1334
- p_cls.append(fg_pred[:, 5:])
1335
-
1336
- grid = torch.stack([gi, gj], dim=1)
1337
- pxy = (fg_pred[:, :2].sigmoid() * 2. - 0.5 + grid) * self.stride[i] #/ 8.
1338
- #pxy = (fg_pred[:, :2].sigmoid() * 3. - 1. + grid) * self.stride[i]
1339
- pwh = (fg_pred[:, 2:4].sigmoid() * 2) ** 2 * anch[i][idx] * self.stride[i] #/ 8.
1340
- pxywh = torch.cat([pxy, pwh], dim=-1)
1341
- pxyxy = xywh2xyxy(pxywh)
1342
- pxyxys.append(pxyxy)
1343
-
1344
- pxyxys = torch.cat(pxyxys, dim=0)
1345
- if pxyxys.shape[0] == 0:
1346
- continue
1347
- p_obj = torch.cat(p_obj, dim=0)
1348
- p_cls = torch.cat(p_cls, dim=0)
1349
- from_which_layer = torch.cat(from_which_layer, dim=0)
1350
- all_b = torch.cat(all_b, dim=0)
1351
- all_a = torch.cat(all_a, dim=0)
1352
- all_gj = torch.cat(all_gj, dim=0)
1353
- all_gi = torch.cat(all_gi, dim=0)
1354
- all_anch = torch.cat(all_anch, dim=0)
1355
-
1356
- pair_wise_iou = box_iou(txyxy, pxyxys)
1357
-
1358
- pair_wise_iou_loss = -torch.log(pair_wise_iou + 1e-8)
1359
-
1360
- top_k, _ = torch.topk(pair_wise_iou, min(20, pair_wise_iou.shape[1]), dim=1)
1361
- dynamic_ks = torch.clamp(top_k.sum(1).int(), min=1)
1362
-
1363
- gt_cls_per_image = (
1364
- F.one_hot(this_target[:, 1].to(torch.int64), self.nc)
1365
- .float()
1366
- .unsqueeze(1)
1367
- .repeat(1, pxyxys.shape[0], 1)
1368
- )
1369
-
1370
- num_gt = this_target.shape[0]
1371
- cls_preds_ = (
1372
- p_cls.float().unsqueeze(0).repeat(num_gt, 1, 1).sigmoid_()
1373
- * p_obj.unsqueeze(0).repeat(num_gt, 1, 1).sigmoid_()
1374
- )
1375
-
1376
- y = cls_preds_.sqrt_()
1377
- pair_wise_cls_loss = F.binary_cross_entropy_with_logits(
1378
- torch.log(y/(1-y)) , gt_cls_per_image, reduction="none"
1379
- ).sum(-1)
1380
- del cls_preds_
1381
-
1382
- cost = (
1383
- pair_wise_cls_loss
1384
- + 3.0 * pair_wise_iou_loss
1385
- )
1386
-
1387
- matching_matrix = torch.zeros_like(cost)
1388
-
1389
- for gt_idx in range(num_gt):
1390
- _, pos_idx = torch.topk(
1391
- cost[gt_idx], k=dynamic_ks[gt_idx].item(), largest=False
1392
- )
1393
- matching_matrix[gt_idx][pos_idx] = 1.0
1394
-
1395
- del top_k, dynamic_ks
1396
- anchor_matching_gt = matching_matrix.sum(0)
1397
- if (anchor_matching_gt > 1).sum() > 0:
1398
- _, cost_argmin = torch.min(cost[:, anchor_matching_gt > 1], dim=0)
1399
- matching_matrix[:, anchor_matching_gt > 1] *= 0.0
1400
- matching_matrix[cost_argmin, anchor_matching_gt > 1] = 1.0
1401
- fg_mask_inboxes = matching_matrix.sum(0) > 0.0
1402
- matched_gt_inds = matching_matrix[:, fg_mask_inboxes].argmax(0)
1403
-
1404
- from_which_layer = from_which_layer[fg_mask_inboxes]
1405
- all_b = all_b[fg_mask_inboxes]
1406
- all_a = all_a[fg_mask_inboxes]
1407
- all_gj = all_gj[fg_mask_inboxes]
1408
- all_gi = all_gi[fg_mask_inboxes]
1409
- all_anch = all_anch[fg_mask_inboxes]
1410
-
1411
- this_target = this_target[matched_gt_inds]
1412
-
1413
- for i in range(nl):
1414
- layer_idx = from_which_layer == i
1415
- matching_bs[i].append(all_b[layer_idx])
1416
- matching_as[i].append(all_a[layer_idx])
1417
- matching_gjs[i].append(all_gj[layer_idx])
1418
- matching_gis[i].append(all_gi[layer_idx])
1419
- matching_targets[i].append(this_target[layer_idx])
1420
- matching_anchs[i].append(all_anch[layer_idx])
1421
-
1422
- for i in range(nl):
1423
- if matching_targets[i] != []:
1424
- matching_bs[i] = torch.cat(matching_bs[i], dim=0)
1425
- matching_as[i] = torch.cat(matching_as[i], dim=0)
1426
- matching_gjs[i] = torch.cat(matching_gjs[i], dim=0)
1427
- matching_gis[i] = torch.cat(matching_gis[i], dim=0)
1428
- matching_targets[i] = torch.cat(matching_targets[i], dim=0)
1429
- matching_anchs[i] = torch.cat(matching_anchs[i], dim=0)
1430
- else:
1431
- matching_bs[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
1432
- matching_as[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
1433
- matching_gjs[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
1434
- matching_gis[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
1435
- matching_targets[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
1436
- matching_anchs[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
1437
-
1438
- return matching_bs, matching_as, matching_gjs, matching_gis, matching_targets, matching_anchs
1439
-
1440
- def build_targets2(self, p, targets, imgs):
1441
-
1442
- indices, anch = self.find_5_positive(p, targets)
1443
-
1444
- matching_bs = [[] for pp in p]
1445
- matching_as = [[] for pp in p]
1446
- matching_gjs = [[] for pp in p]
1447
- matching_gis = [[] for pp in p]
1448
- matching_targets = [[] for pp in p]
1449
- matching_anchs = [[] for pp in p]
1450
-
1451
- nl = len(p)
1452
-
1453
- for batch_idx in range(p[0].shape[0]):
1454
-
1455
- b_idx = targets[:, 0]==batch_idx
1456
- this_target = targets[b_idx]
1457
- if this_target.shape[0] == 0:
1458
- continue
1459
-
1460
- txywh = this_target[:, 2:6] * imgs[batch_idx].shape[1]
1461
- txyxy = xywh2xyxy(txywh)
1462
-
1463
- pxyxys = []
1464
- p_cls = []
1465
- p_obj = []
1466
- from_which_layer = []
1467
- all_b = []
1468
- all_a = []
1469
- all_gj = []
1470
- all_gi = []
1471
- all_anch = []
1472
-
1473
- for i, pi in enumerate(p):
1474
-
1475
- b, a, gj, gi = indices[i]
1476
- idx = (b == batch_idx)
1477
- b, a, gj, gi = b[idx], a[idx], gj[idx], gi[idx]
1478
- all_b.append(b)
1479
- all_a.append(a)
1480
- all_gj.append(gj)
1481
- all_gi.append(gi)
1482
- all_anch.append(anch[i][idx])
1483
- from_which_layer.append(torch.ones(size=(len(b),)) * i)
1484
-
1485
- fg_pred = pi[b, a, gj, gi]
1486
- p_obj.append(fg_pred[:, 4:5])
1487
- p_cls.append(fg_pred[:, 5:])
1488
-
1489
- grid = torch.stack([gi, gj], dim=1)
1490
- pxy = (fg_pred[:, :2].sigmoid() * 2. - 0.5 + grid) * self.stride[i] #/ 8.
1491
- #pxy = (fg_pred[:, :2].sigmoid() * 3. - 1. + grid) * self.stride[i]
1492
- pwh = (fg_pred[:, 2:4].sigmoid() * 2) ** 2 * anch[i][idx] * self.stride[i] #/ 8.
1493
- pxywh = torch.cat([pxy, pwh], dim=-1)
1494
- pxyxy = xywh2xyxy(pxywh)
1495
- pxyxys.append(pxyxy)
1496
-
1497
- pxyxys = torch.cat(pxyxys, dim=0)
1498
- if pxyxys.shape[0] == 0:
1499
- continue
1500
- p_obj = torch.cat(p_obj, dim=0)
1501
- p_cls = torch.cat(p_cls, dim=0)
1502
- from_which_layer = torch.cat(from_which_layer, dim=0)
1503
- all_b = torch.cat(all_b, dim=0)
1504
- all_a = torch.cat(all_a, dim=0)
1505
- all_gj = torch.cat(all_gj, dim=0)
1506
- all_gi = torch.cat(all_gi, dim=0)
1507
- all_anch = torch.cat(all_anch, dim=0)
1508
-
1509
- pair_wise_iou = box_iou(txyxy, pxyxys)
1510
-
1511
- pair_wise_iou_loss = -torch.log(pair_wise_iou + 1e-8)
1512
-
1513
- top_k, _ = torch.topk(pair_wise_iou, min(20, pair_wise_iou.shape[1]), dim=1)
1514
- dynamic_ks = torch.clamp(top_k.sum(1).int(), min=1)
1515
-
1516
- gt_cls_per_image = (
1517
- F.one_hot(this_target[:, 1].to(torch.int64), self.nc)
1518
- .float()
1519
- .unsqueeze(1)
1520
- .repeat(1, pxyxys.shape[0], 1)
1521
- )
1522
-
1523
- num_gt = this_target.shape[0]
1524
- cls_preds_ = (
1525
- p_cls.float().unsqueeze(0).repeat(num_gt, 1, 1).sigmoid_()
1526
- * p_obj.unsqueeze(0).repeat(num_gt, 1, 1).sigmoid_()
1527
- )
1528
-
1529
- y = cls_preds_.sqrt_()
1530
- pair_wise_cls_loss = F.binary_cross_entropy_with_logits(
1531
- torch.log(y/(1-y)) , gt_cls_per_image, reduction="none"
1532
- ).sum(-1)
1533
- del cls_preds_
1534
-
1535
- cost = (
1536
- pair_wise_cls_loss
1537
- + 3.0 * pair_wise_iou_loss
1538
- )
1539
-
1540
- matching_matrix = torch.zeros_like(cost)
1541
-
1542
- for gt_idx in range(num_gt):
1543
- _, pos_idx = torch.topk(
1544
- cost[gt_idx], k=dynamic_ks[gt_idx].item(), largest=False
1545
- )
1546
- matching_matrix[gt_idx][pos_idx] = 1.0
1547
-
1548
- del top_k, dynamic_ks
1549
- anchor_matching_gt = matching_matrix.sum(0)
1550
- if (anchor_matching_gt > 1).sum() > 0:
1551
- _, cost_argmin = torch.min(cost[:, anchor_matching_gt > 1], dim=0)
1552
- matching_matrix[:, anchor_matching_gt > 1] *= 0.0
1553
- matching_matrix[cost_argmin, anchor_matching_gt > 1] = 1.0
1554
- fg_mask_inboxes = matching_matrix.sum(0) > 0.0
1555
- matched_gt_inds = matching_matrix[:, fg_mask_inboxes].argmax(0)
1556
-
1557
- from_which_layer = from_which_layer[fg_mask_inboxes]
1558
- all_b = all_b[fg_mask_inboxes]
1559
- all_a = all_a[fg_mask_inboxes]
1560
- all_gj = all_gj[fg_mask_inboxes]
1561
- all_gi = all_gi[fg_mask_inboxes]
1562
- all_anch = all_anch[fg_mask_inboxes]
1563
-
1564
- this_target = this_target[matched_gt_inds]
1565
-
1566
- for i in range(nl):
1567
- layer_idx = from_which_layer == i
1568
- matching_bs[i].append(all_b[layer_idx])
1569
- matching_as[i].append(all_a[layer_idx])
1570
- matching_gjs[i].append(all_gj[layer_idx])
1571
- matching_gis[i].append(all_gi[layer_idx])
1572
- matching_targets[i].append(this_target[layer_idx])
1573
- matching_anchs[i].append(all_anch[layer_idx])
1574
-
1575
- for i in range(nl):
1576
- if matching_targets[i] != []:
1577
- matching_bs[i] = torch.cat(matching_bs[i], dim=0)
1578
- matching_as[i] = torch.cat(matching_as[i], dim=0)
1579
- matching_gjs[i] = torch.cat(matching_gjs[i], dim=0)
1580
- matching_gis[i] = torch.cat(matching_gis[i], dim=0)
1581
- matching_targets[i] = torch.cat(matching_targets[i], dim=0)
1582
- matching_anchs[i] = torch.cat(matching_anchs[i], dim=0)
1583
- else:
1584
- matching_bs[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
1585
- matching_as[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
1586
- matching_gjs[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
1587
- matching_gis[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
1588
- matching_targets[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
1589
- matching_anchs[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
1590
-
1591
- return matching_bs, matching_as, matching_gjs, matching_gis, matching_targets, matching_anchs
1592
-
1593
- def find_5_positive(self, p, targets):
1594
- # Build targets for compute_loss(), input targets(image,class,x,y,w,h)
1595
- na, nt = self.na, targets.shape[0] # number of anchors, targets
1596
- indices, anch = [], []
1597
- gain = torch.ones(7, device=targets.device).long() # normalized to gridspace gain
1598
- ai = torch.arange(na, device=targets.device).float().view(na, 1).repeat(1, nt) # same as .repeat_interleave(nt)
1599
- targets = torch.cat((targets.repeat(na, 1, 1), ai[:, :, None]), 2) # append anchor indices
1600
-
1601
- g = 1.0 # bias
1602
- off = torch.tensor([[0, 0],
1603
- [1, 0], [0, 1], [-1, 0], [0, -1], # j,k,l,m
1604
- # [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm
1605
- ], device=targets.device).float() * g # offsets
1606
-
1607
- for i in range(self.nl):
1608
- anchors = self.anchors[i]
1609
- gain[2:6] = torch.tensor(p[i].shape)[[3, 2, 3, 2]] # xyxy gain
1610
-
1611
- # Match targets to anchors
1612
- t = targets * gain
1613
- if nt:
1614
- # Matches
1615
- r = t[:, :, 4:6] / anchors[:, None] # wh ratio
1616
- j = torch.max(r, 1. / r).max(2)[0] < self.hyp['anchor_t'] # compare
1617
- # j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2))
1618
- t = t[j] # filter
1619
-
1620
- # Offsets
1621
- gxy = t[:, 2:4] # grid xy
1622
- gxi = gain[[2, 3]] - gxy # inverse
1623
- j, k = ((gxy % 1. < g) & (gxy > 1.)).T
1624
- l, m = ((gxi % 1. < g) & (gxi > 1.)).T
1625
- j = torch.stack((torch.ones_like(j), j, k, l, m))
1626
- t = t.repeat((5, 1, 1))[j]
1627
- offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j]
1628
- else:
1629
- t = targets[0]
1630
- offsets = 0
1631
-
1632
- # Define
1633
- b, c = t[:, :2].long().T # image, class
1634
- gxy = t[:, 2:4] # grid xy
1635
- gwh = t[:, 4:6] # grid wh
1636
- gij = (gxy - offsets).long()
1637
- gi, gj = gij.T # grid xy indices
1638
-
1639
- # Append
1640
- a = t[:, 6].long() # anchor indices
1641
- indices.append((b, a, gj.clamp_(0, gain[3] - 1), gi.clamp_(0, gain[2] - 1))) # image, anchor, grid indices
1642
- anch.append(anchors[a]) # anchors
1643
-
1644
- return indices, anch
1645
-
1646
- def find_3_positive(self, p, targets):
1647
- # Build targets for compute_loss(), input targets(image,class,x,y,w,h)
1648
- na, nt = self.na, targets.shape[0] # number of anchors, targets
1649
- indices, anch = [], []
1650
- gain = torch.ones(7, device=targets.device).long() # normalized to gridspace gain
1651
- ai = torch.arange(na, device=targets.device).float().view(na, 1).repeat(1, nt) # same as .repeat_interleave(nt)
1652
- targets = torch.cat((targets.repeat(na, 1, 1), ai[:, :, None]), 2) # append anchor indices
1653
-
1654
- g = 0.5 # bias
1655
- off = torch.tensor([[0, 0],
1656
- [1, 0], [0, 1], [-1, 0], [0, -1], # j,k,l,m
1657
- # [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm
1658
- ], device=targets.device).float() * g # offsets
1659
-
1660
- for i in range(self.nl):
1661
- anchors = self.anchors[i]
1662
- gain[2:6] = torch.tensor(p[i].shape)[[3, 2, 3, 2]] # xyxy gain
1663
-
1664
- # Match targets to anchors
1665
- t = targets * gain
1666
- if nt:
1667
- # Matches
1668
- r = t[:, :, 4:6] / anchors[:, None] # wh ratio
1669
- j = torch.max(r, 1. / r).max(2)[0] < self.hyp['anchor_t'] # compare
1670
- # j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2))
1671
- t = t[j] # filter
1672
-
1673
- # Offsets
1674
- gxy = t[:, 2:4] # grid xy
1675
- gxi = gain[[2, 3]] - gxy # inverse
1676
- j, k = ((gxy % 1. < g) & (gxy > 1.)).T
1677
- l, m = ((gxi % 1. < g) & (gxi > 1.)).T
1678
- j = torch.stack((torch.ones_like(j), j, k, l, m))
1679
- t = t.repeat((5, 1, 1))[j]
1680
- offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j]
1681
- else:
1682
- t = targets[0]
1683
- offsets = 0
1684
-
1685
- # Define
1686
- b, c = t[:, :2].long().T # image, class
1687
- gxy = t[:, 2:4] # grid xy
1688
- gwh = t[:, 4:6] # grid wh
1689
- gij = (gxy - offsets).long()
1690
- gi, gj = gij.T # grid xy indices
1691
-
1692
- # Append
1693
- a = t[:, 6].long() # anchor indices
1694
- indices.append((b, a, gj.clamp_(0, gain[3] - 1), gi.clamp_(0, gain[2] - 1))) # image, anchor, grid indices
1695
- anch.append(anchors[a]) # anchors
1696
-
1697
- return indices, anch
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
utils/metrics.py DELETED
@@ -1,227 +0,0 @@
1
- # Model validation metrics
2
-
3
- from pathlib import Path
4
-
5
- import matplotlib.pyplot as plt
6
- import numpy as np
7
- import torch
8
-
9
- from . import general
10
-
11
-
12
- def fitness(x):
13
- # Model fitness as a weighted combination of metrics
14
- w = [0.0, 0.0, 0.1, 0.9] # weights for [P, R, mAP@0.5, mAP@0.5:0.95]
15
- return (x[:, :4] * w).sum(1)
16
-
17
-
18
- def ap_per_class(tp, conf, pred_cls, target_cls, v5_metric=False, plot=False, save_dir='.', names=()):
19
- """ Compute the average precision, given the recall and precision curves.
20
- Source: https://github.com/rafaelpadilla/Object-Detection-Metrics.
21
- # Arguments
22
- tp: True positives (nparray, nx1 or nx10).
23
- conf: Objectness value from 0-1 (nparray).
24
- pred_cls: Predicted object classes (nparray).
25
- target_cls: True object classes (nparray).
26
- plot: Plot precision-recall curve at mAP@0.5
27
- save_dir: Plot save directory
28
- # Returns
29
- The average precision as computed in py-faster-rcnn.
30
- """
31
-
32
- # Sort by objectness
33
- i = np.argsort(-conf)
34
- tp, conf, pred_cls = tp[i], conf[i], pred_cls[i]
35
-
36
- # Find unique classes
37
- unique_classes = np.unique(target_cls)
38
- nc = unique_classes.shape[0] # number of classes, number of detections
39
-
40
- # Create Precision-Recall curve and compute AP for each class
41
- px, py = np.linspace(0, 1, 1000), [] # for plotting
42
- ap, p, r = np.zeros((nc, tp.shape[1])), np.zeros((nc, 1000)), np.zeros((nc, 1000))
43
- for ci, c in enumerate(unique_classes):
44
- i = pred_cls == c
45
- n_l = (target_cls == c).sum() # number of labels
46
- n_p = i.sum() # number of predictions
47
-
48
- if n_p == 0 or n_l == 0:
49
- continue
50
- else:
51
- # Accumulate FPs and TPs
52
- fpc = (1 - tp[i]).cumsum(0)
53
- tpc = tp[i].cumsum(0)
54
-
55
- # Recall
56
- recall = tpc / (n_l + 1e-16) # recall curve
57
- r[ci] = np.interp(-px, -conf[i], recall[:, 0], left=0) # negative x, xp because xp decreases
58
-
59
- # Precision
60
- precision = tpc / (tpc + fpc) # precision curve
61
- p[ci] = np.interp(-px, -conf[i], precision[:, 0], left=1) # p at pr_score
62
-
63
- # AP from recall-precision curve
64
- for j in range(tp.shape[1]):
65
- ap[ci, j], mpre, mrec = compute_ap(recall[:, j], precision[:, j], v5_metric=v5_metric)
66
- if plot and j == 0:
67
- py.append(np.interp(px, mrec, mpre)) # precision at mAP@0.5
68
-
69
- # Compute F1 (harmonic mean of precision and recall)
70
- f1 = 2 * p * r / (p + r + 1e-16)
71
- if plot:
72
- plot_pr_curve(px, py, ap, Path(save_dir) / 'PR_curve.png', names)
73
- plot_mc_curve(px, f1, Path(save_dir) / 'F1_curve.png', names, ylabel='F1')
74
- plot_mc_curve(px, p, Path(save_dir) / 'P_curve.png', names, ylabel='Precision')
75
- plot_mc_curve(px, r, Path(save_dir) / 'R_curve.png', names, ylabel='Recall')
76
-
77
- i = f1.mean(0).argmax() # max F1 index
78
- return p[:, i], r[:, i], ap, f1[:, i], unique_classes.astype('int32')
79
-
80
-
81
- def compute_ap(recall, precision, v5_metric=False):
82
- """ Compute the average precision, given the recall and precision curves
83
- # Arguments
84
- recall: The recall curve (list)
85
- precision: The precision curve (list)
86
- v5_metric: Assume maximum recall to be 1.0, as in YOLOv5, MMDetetion etc.
87
- # Returns
88
- Average precision, precision curve, recall curve
89
- """
90
-
91
- # Append sentinel values to beginning and end
92
- if v5_metric: # New YOLOv5 metric, same as MMDetection and Detectron2 repositories
93
- mrec = np.concatenate(([0.], recall, [1.0]))
94
- else: # Old YOLOv5 metric, i.e. default YOLOv7 metric
95
- mrec = np.concatenate(([0.], recall, [recall[-1] + 0.01]))
96
- mpre = np.concatenate(([1.], precision, [0.]))
97
-
98
- # Compute the precision envelope
99
- mpre = np.flip(np.maximum.accumulate(np.flip(mpre)))
100
-
101
- # Integrate area under curve
102
- method = 'interp' # methods: 'continuous', 'interp'
103
- if method == 'interp':
104
- x = np.linspace(0, 1, 101) # 101-point interp (COCO)
105
- ap = np.trapz(np.interp(x, mrec, mpre), x) # integrate
106
- else: # 'continuous'
107
- i = np.where(mrec[1:] != mrec[:-1])[0] # points where x axis (recall) changes
108
- ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) # area under curve
109
-
110
- return ap, mpre, mrec
111
-
112
-
113
- class ConfusionMatrix:
114
- # Updated version of https://github.com/kaanakan/object_detection_confusion_matrix
115
- def __init__(self, nc, conf=0.25, iou_thres=0.45):
116
- self.matrix = np.zeros((nc + 1, nc + 1))
117
- self.nc = nc # number of classes
118
- self.conf = conf
119
- self.iou_thres = iou_thres
120
-
121
- def process_batch(self, detections, labels):
122
- """
123
- Return intersection-over-union (Jaccard index) of boxes.
124
- Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
125
- Arguments:
126
- detections (Array[N, 6]), x1, y1, x2, y2, conf, class
127
- labels (Array[M, 5]), class, x1, y1, x2, y2
128
- Returns:
129
- None, updates confusion matrix accordingly
130
- """
131
- detections = detections[detections[:, 4] > self.conf]
132
- gt_classes = labels[:, 0].int()
133
- detection_classes = detections[:, 5].int()
134
- iou = general.box_iou(labels[:, 1:], detections[:, :4])
135
-
136
- x = torch.where(iou > self.iou_thres)
137
- if x[0].shape[0]:
138
- matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy()
139
- if x[0].shape[0] > 1:
140
- matches = matches[matches[:, 2].argsort()[::-1]]
141
- matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
142
- matches = matches[matches[:, 2].argsort()[::-1]]
143
- matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
144
- else:
145
- matches = np.zeros((0, 3))
146
-
147
- n = matches.shape[0] > 0
148
- m0, m1, _ = matches.transpose().astype(np.int16)
149
- for i, gc in enumerate(gt_classes):
150
- j = m0 == i
151
- if n and sum(j) == 1:
152
- self.matrix[gc, detection_classes[m1[j]]] += 1 # correct
153
- else:
154
- self.matrix[self.nc, gc] += 1 # background FP
155
-
156
- if n:
157
- for i, dc in enumerate(detection_classes):
158
- if not any(m1 == i):
159
- self.matrix[dc, self.nc] += 1 # background FN
160
-
161
- def matrix(self):
162
- return self.matrix
163
-
164
- def plot(self, save_dir='', names=()):
165
- try:
166
- import seaborn as sn
167
-
168
- array = self.matrix / (self.matrix.sum(0).reshape(1, self.nc + 1) + 1E-6) # normalize
169
- array[array < 0.005] = np.nan # don't annotate (would appear as 0.00)
170
-
171
- fig = plt.figure(figsize=(12, 9), tight_layout=True)
172
- sn.set(font_scale=1.0 if self.nc < 50 else 0.8) # for label size
173
- labels = (0 < len(names) < 99) and len(names) == self.nc # apply names to ticklabels
174
- sn.heatmap(array, annot=self.nc < 30, annot_kws={"size": 8}, cmap='Blues', fmt='.2f', square=True,
175
- xticklabels=names + ['background FP'] if labels else "auto",
176
- yticklabels=names + ['background FN'] if labels else "auto").set_facecolor((1, 1, 1))
177
- fig.axes[0].set_xlabel('True')
178
- fig.axes[0].set_ylabel('Predicted')
179
- fig.savefig(Path(save_dir) / 'confusion_matrix.png', dpi=250)
180
- except Exception as e:
181
- pass
182
-
183
- def print(self):
184
- for i in range(self.nc + 1):
185
- print(' '.join(map(str, self.matrix[i])))
186
-
187
-
188
- # Plots ----------------------------------------------------------------------------------------------------------------
189
-
190
- def plot_pr_curve(px, py, ap, save_dir='pr_curve.png', names=()):
191
- # Precision-recall curve
192
- fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True)
193
- py = np.stack(py, axis=1)
194
-
195
- if 0 < len(names) < 21: # display per-class legend if < 21 classes
196
- for i, y in enumerate(py.T):
197
- ax.plot(px, y, linewidth=1, label=f'{names[i]} {ap[i, 0]:.3f}') # plot(recall, precision)
198
- else:
199
- ax.plot(px, py, linewidth=1, color='grey') # plot(recall, precision)
200
-
201
- ax.plot(px, py.mean(1), linewidth=3, color='blue', label='all classes %.3f mAP@0.5' % ap[:, 0].mean())
202
- ax.set_xlabel('Recall')
203
- ax.set_ylabel('Precision')
204
- ax.set_xlim(0, 1)
205
- ax.set_ylim(0, 1)
206
- plt.legend(bbox_to_anchor=(1.04, 1), loc="upper left")
207
- fig.savefig(Path(save_dir), dpi=250)
208
-
209
-
210
- def plot_mc_curve(px, py, save_dir='mc_curve.png', names=(), xlabel='Confidence', ylabel='Metric'):
211
- # Metric-confidence curve
212
- fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True)
213
-
214
- if 0 < len(names) < 21: # display per-class legend if < 21 classes
215
- for i, y in enumerate(py):
216
- ax.plot(px, y, linewidth=1, label=f'{names[i]}') # plot(confidence, metric)
217
- else:
218
- ax.plot(px, py.T, linewidth=1, color='grey') # plot(confidence, metric)
219
-
220
- y = py.mean(0)
221
- ax.plot(px, y, linewidth=3, color='blue', label=f'all classes {y.max():.2f} at {px[y.argmax()]:.3f}')
222
- ax.set_xlabel(xlabel)
223
- ax.set_ylabel(ylabel)
224
- ax.set_xlim(0, 1)
225
- ax.set_ylim(0, 1)
226
- plt.legend(bbox_to_anchor=(1.04, 1), loc="upper left")
227
- fig.savefig(Path(save_dir), dpi=250)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
utils/plots.py DELETED
@@ -1,489 +0,0 @@
1
- # Plotting utils
2
-
3
- import glob
4
- import math
5
- import os
6
- import random
7
- from copy import copy
8
- from pathlib import Path
9
-
10
- import cv2
11
- import matplotlib
12
- import matplotlib.pyplot as plt
13
- import numpy as np
14
- import pandas as pd
15
- import seaborn as sns
16
- import torch
17
- import yaml
18
- from PIL import Image, ImageDraw, ImageFont
19
- from scipy.signal import butter, filtfilt
20
-
21
- from utils.general import xywh2xyxy, xyxy2xywh
22
- from utils.metrics import fitness
23
-
24
- # Settings
25
- matplotlib.rc('font', **{'size': 11})
26
- matplotlib.use('Agg') # for writing to files only
27
-
28
-
29
- def color_list():
30
- # Return first 10 plt colors as (r,g,b) https://stackoverflow.com/questions/51350872/python-from-color-name-to-rgb
31
- def hex2rgb(h):
32
- return tuple(int(h[1 + i:1 + i + 2], 16) for i in (0, 2, 4))
33
-
34
- return [hex2rgb(h) for h in matplotlib.colors.TABLEAU_COLORS.values()] # or BASE_ (8), CSS4_ (148), XKCD_ (949)
35
-
36
-
37
- def hist2d(x, y, n=100):
38
- # 2d histogram used in labels.png and evolve.png
39
- xedges, yedges = np.linspace(x.min(), x.max(), n), np.linspace(y.min(), y.max(), n)
40
- hist, xedges, yedges = np.histogram2d(x, y, (xedges, yedges))
41
- xidx = np.clip(np.digitize(x, xedges) - 1, 0, hist.shape[0] - 1)
42
- yidx = np.clip(np.digitize(y, yedges) - 1, 0, hist.shape[1] - 1)
43
- return np.log(hist[xidx, yidx])
44
-
45
-
46
- def butter_lowpass_filtfilt(data, cutoff=1500, fs=50000, order=5):
47
- # https://stackoverflow.com/questions/28536191/how-to-filter-smooth-with-scipy-numpy
48
- def butter_lowpass(cutoff, fs, order):
49
- nyq = 0.5 * fs
50
- normal_cutoff = cutoff / nyq
51
- return butter(order, normal_cutoff, btype='low', analog=False)
52
-
53
- b, a = butter_lowpass(cutoff, fs, order=order)
54
- return filtfilt(b, a, data) # forward-backward filter
55
-
56
-
57
- def plot_one_box(x, img, color=None, label=None, line_thickness=3):
58
- # Plots one bounding box on image img
59
- tl = line_thickness or round(0.002 * (img.shape[0] + img.shape[1]) / 2) + 1 # line/font thickness
60
- color = color or [random.randint(0, 255) for _ in range(3)]
61
- c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3]))
62
- cv2.rectangle(img, c1, c2, color, thickness=tl, lineType=cv2.LINE_AA)
63
- if label:
64
- tf = max(tl - 1, 1) # font thickness
65
- t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]
66
- c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3
67
- cv2.rectangle(img, c1, c2, color, -1, cv2.LINE_AA) # filled
68
- cv2.putText(img, label, (c1[0], c1[1] - 2), 0, tl / 3, [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA)
69
-
70
-
71
- def plot_one_box_PIL(box, img, color=None, label=None, line_thickness=None):
72
- img = Image.fromarray(img)
73
- draw = ImageDraw.Draw(img)
74
- line_thickness = line_thickness or max(int(min(img.size) / 200), 2)
75
- draw.rectangle(box, width=line_thickness, outline=tuple(color)) # plot
76
- if label:
77
- fontsize = max(round(max(img.size) / 40), 12)
78
- font = ImageFont.truetype("Arial.ttf", fontsize)
79
- txt_width, txt_height = font.getsize(label)
80
- draw.rectangle([box[0], box[1] - txt_height + 4, box[0] + txt_width, box[1]], fill=tuple(color))
81
- draw.text((box[0], box[1] - txt_height + 1), label, fill=(255, 255, 255), font=font)
82
- return np.asarray(img)
83
-
84
-
85
- def plot_wh_methods(): # from utils.plots import *; plot_wh_methods()
86
- # Compares the two methods for width-height anchor multiplication
87
- # https://github.com/ultralytics/yolov3/issues/168
88
- x = np.arange(-4.0, 4.0, .1)
89
- ya = np.exp(x)
90
- yb = torch.sigmoid(torch.from_numpy(x)).numpy() * 2
91
-
92
- fig = plt.figure(figsize=(6, 3), tight_layout=True)
93
- plt.plot(x, ya, '.-', label='YOLOv3')
94
- plt.plot(x, yb ** 2, '.-', label='YOLOR ^2')
95
- plt.plot(x, yb ** 1.6, '.-', label='YOLOR ^1.6')
96
- plt.xlim(left=-4, right=4)
97
- plt.ylim(bottom=0, top=6)
98
- plt.xlabel('input')
99
- plt.ylabel('output')
100
- plt.grid()
101
- plt.legend()
102
- fig.savefig('comparison.png', dpi=200)
103
-
104
-
105
- def output_to_target(output):
106
- # Convert model output to target format [batch_id, class_id, x, y, w, h, conf]
107
- targets = []
108
- for i, o in enumerate(output):
109
- for *box, conf, cls in o.cpu().numpy():
110
- targets.append([i, cls, *list(*xyxy2xywh(np.array(box)[None])), conf])
111
- return np.array(targets)
112
-
113
-
114
- def plot_images(images, targets, paths=None, fname='images.jpg', names=None, max_size=640, max_subplots=16):
115
- # Plot image grid with labels
116
-
117
- if isinstance(images, torch.Tensor):
118
- images = images.cpu().float().numpy()
119
- if isinstance(targets, torch.Tensor):
120
- targets = targets.cpu().numpy()
121
-
122
- # un-normalise
123
- if np.max(images[0]) <= 1:
124
- images *= 255
125
-
126
- tl = 3 # line thickness
127
- tf = max(tl - 1, 1) # font thickness
128
- bs, _, h, w = images.shape # batch size, _, height, width
129
- bs = min(bs, max_subplots) # limit plot images
130
- ns = np.ceil(bs ** 0.5) # number of subplots (square)
131
-
132
- # Check if we should resize
133
- scale_factor = max_size / max(h, w)
134
- if scale_factor < 1:
135
- h = math.ceil(scale_factor * h)
136
- w = math.ceil(scale_factor * w)
137
-
138
- colors = color_list() # list of colors
139
- mosaic = np.full((int(ns * h), int(ns * w), 3), 255, dtype=np.uint8) # init
140
- for i, img in enumerate(images):
141
- if i == max_subplots: # if last batch has fewer images than we expect
142
- break
143
-
144
- block_x = int(w * (i // ns))
145
- block_y = int(h * (i % ns))
146
-
147
- img = img.transpose(1, 2, 0)
148
- if scale_factor < 1:
149
- img = cv2.resize(img, (w, h))
150
-
151
- mosaic[block_y:block_y + h, block_x:block_x + w, :] = img
152
- if len(targets) > 0:
153
- image_targets = targets[targets[:, 0] == i]
154
- boxes = xywh2xyxy(image_targets[:, 2:6]).T
155
- classes = image_targets[:, 1].astype('int')
156
- labels = image_targets.shape[1] == 6 # labels if no conf column
157
- conf = None if labels else image_targets[:, 6] # check for confidence presence (label vs pred)
158
-
159
- if boxes.shape[1]:
160
- if boxes.max() <= 1.01: # if normalized with tolerance 0.01
161
- boxes[[0, 2]] *= w # scale to pixels
162
- boxes[[1, 3]] *= h
163
- elif scale_factor < 1: # absolute coords need scale if image scales
164
- boxes *= scale_factor
165
- boxes[[0, 2]] += block_x
166
- boxes[[1, 3]] += block_y
167
- for j, box in enumerate(boxes.T):
168
- cls = int(classes[j])
169
- color = colors[cls % len(colors)]
170
- cls = names[cls] if names else cls
171
- if labels or conf[j] > 0.25: # 0.25 conf thresh
172
- label = '%s' % cls if labels else '%s %.1f' % (cls, conf[j])
173
- plot_one_box(box, mosaic, label=label, color=color, line_thickness=tl)
174
-
175
- # Draw image filename labels
176
- if paths:
177
- label = Path(paths[i]).name[:40] # trim to 40 char
178
- t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]
179
- cv2.putText(mosaic, label, (block_x + 5, block_y + t_size[1] + 5), 0, tl / 3, [220, 220, 220], thickness=tf,
180
- lineType=cv2.LINE_AA)
181
-
182
- # Image border
183
- cv2.rectangle(mosaic, (block_x, block_y), (block_x + w, block_y + h), (255, 255, 255), thickness=3)
184
-
185
- if fname:
186
- r = min(1280. / max(h, w) / ns, 1.0) # ratio to limit image size
187
- mosaic = cv2.resize(mosaic, (int(ns * w * r), int(ns * h * r)), interpolation=cv2.INTER_AREA)
188
- # cv2.imwrite(fname, cv2.cvtColor(mosaic, cv2.COLOR_BGR2RGB)) # cv2 save
189
- Image.fromarray(mosaic).save(fname) # PIL save
190
- return mosaic
191
-
192
-
193
- def plot_lr_scheduler(optimizer, scheduler, epochs=300, save_dir=''):
194
- # Plot LR simulating training for full epochs
195
- optimizer, scheduler = copy(optimizer), copy(scheduler) # do not modify originals
196
- y = []
197
- for _ in range(epochs):
198
- scheduler.step()
199
- y.append(optimizer.param_groups[0]['lr'])
200
- plt.plot(y, '.-', label='LR')
201
- plt.xlabel('epoch')
202
- plt.ylabel('LR')
203
- plt.grid()
204
- plt.xlim(0, epochs)
205
- plt.ylim(0)
206
- plt.savefig(Path(save_dir) / 'LR.png', dpi=200)
207
- plt.close()
208
-
209
-
210
- def plot_test_txt(): # from utils.plots import *; plot_test()
211
- # Plot test.txt histograms
212
- x = np.loadtxt('test.txt', dtype=np.float32)
213
- box = xyxy2xywh(x[:, :4])
214
- cx, cy = box[:, 0], box[:, 1]
215
-
216
- fig, ax = plt.subplots(1, 1, figsize=(6, 6), tight_layout=True)
217
- ax.hist2d(cx, cy, bins=600, cmax=10, cmin=0)
218
- ax.set_aspect('equal')
219
- plt.savefig('hist2d.png', dpi=300)
220
-
221
- fig, ax = plt.subplots(1, 2, figsize=(12, 6), tight_layout=True)
222
- ax[0].hist(cx, bins=600)
223
- ax[1].hist(cy, bins=600)
224
- plt.savefig('hist1d.png', dpi=200)
225
-
226
-
227
- def plot_targets_txt(): # from utils.plots import *; plot_targets_txt()
228
- # Plot targets.txt histograms
229
- x = np.loadtxt('targets.txt', dtype=np.float32).T
230
- s = ['x targets', 'y targets', 'width targets', 'height targets']
231
- fig, ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)
232
- ax = ax.ravel()
233
- for i in range(4):
234
- ax[i].hist(x[i], bins=100, label='%.3g +/- %.3g' % (x[i].mean(), x[i].std()))
235
- ax[i].legend()
236
- ax[i].set_title(s[i])
237
- plt.savefig('targets.jpg', dpi=200)
238
-
239
-
240
- def plot_study_txt(path='', x=None): # from utils.plots import *; plot_study_txt()
241
- # Plot study.txt generated by test.py
242
- fig, ax = plt.subplots(2, 4, figsize=(10, 6), tight_layout=True)
243
- # ax = ax.ravel()
244
-
245
- fig2, ax2 = plt.subplots(1, 1, figsize=(8, 4), tight_layout=True)
246
- # for f in [Path(path) / f'study_coco_{x}.txt' for x in ['yolor-p6', 'yolor-w6', 'yolor-e6', 'yolor-d6']]:
247
- for f in sorted(Path(path).glob('study*.txt')):
248
- y = np.loadtxt(f, dtype=np.float32, usecols=[0, 1, 2, 3, 7, 8, 9], ndmin=2).T
249
- x = np.arange(y.shape[1]) if x is None else np.array(x)
250
- s = ['P', 'R', 'mAP@.5', 'mAP@.5:.95', 't_inference (ms/img)', 't_NMS (ms/img)', 't_total (ms/img)']
251
- # for i in range(7):
252
- # ax[i].plot(x, y[i], '.-', linewidth=2, markersize=8)
253
- # ax[i].set_title(s[i])
254
-
255
- j = y[3].argmax() + 1
256
- ax2.plot(y[6, 1:j], y[3, 1:j] * 1E2, '.-', linewidth=2, markersize=8,
257
- label=f.stem.replace('study_coco_', '').replace('yolo', 'YOLO'))
258
-
259
- ax2.plot(1E3 / np.array([209, 140, 97, 58, 35, 18]), [34.6, 40.5, 43.0, 47.5, 49.7, 51.5],
260
- 'k.-', linewidth=2, markersize=8, alpha=.25, label='EfficientDet')
261
-
262
- ax2.grid(alpha=0.2)
263
- ax2.set_yticks(np.arange(20, 60, 5))
264
- ax2.set_xlim(0, 57)
265
- ax2.set_ylim(30, 55)
266
- ax2.set_xlabel('GPU Speed (ms/img)')
267
- ax2.set_ylabel('COCO AP val')
268
- ax2.legend(loc='lower right')
269
- plt.savefig(str(Path(path).name) + '.png', dpi=300)
270
-
271
-
272
- def plot_labels(labels, names=(), save_dir=Path(''), loggers=None):
273
- # plot dataset labels
274
- print('Plotting labels... ')
275
- c, b = labels[:, 0], labels[:, 1:].transpose() # classes, boxes
276
- nc = int(c.max() + 1) # number of classes
277
- colors = color_list()
278
- x = pd.DataFrame(b.transpose(), columns=['x', 'y', 'width', 'height'])
279
-
280
- # seaborn correlogram
281
- sns.pairplot(x, corner=True, diag_kind='auto', kind='hist', diag_kws=dict(bins=50), plot_kws=dict(pmax=0.9))
282
- plt.savefig(save_dir / 'labels_correlogram.jpg', dpi=200)
283
- plt.close()
284
-
285
- # matplotlib labels
286
- matplotlib.use('svg') # faster
287
- ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)[1].ravel()
288
- ax[0].hist(c, bins=np.linspace(0, nc, nc + 1) - 0.5, rwidth=0.8)
289
- ax[0].set_ylabel('instances')
290
- if 0 < len(names) < 30:
291
- ax[0].set_xticks(range(len(names)))
292
- ax[0].set_xticklabels(names, rotation=90, fontsize=10)
293
- else:
294
- ax[0].set_xlabel('classes')
295
- sns.histplot(x, x='x', y='y', ax=ax[2], bins=50, pmax=0.9)
296
- sns.histplot(x, x='width', y='height', ax=ax[3], bins=50, pmax=0.9)
297
-
298
- # rectangles
299
- labels[:, 1:3] = 0.5 # center
300
- labels[:, 1:] = xywh2xyxy(labels[:, 1:]) * 2000
301
- img = Image.fromarray(np.ones((2000, 2000, 3), dtype=np.uint8) * 255)
302
- for cls, *box in labels[:1000]:
303
- ImageDraw.Draw(img).rectangle(box, width=1, outline=colors[int(cls) % 10]) # plot
304
- ax[1].imshow(img)
305
- ax[1].axis('off')
306
-
307
- for a in [0, 1, 2, 3]:
308
- for s in ['top', 'right', 'left', 'bottom']:
309
- ax[a].spines[s].set_visible(False)
310
-
311
- plt.savefig(save_dir / 'labels.jpg', dpi=200)
312
- matplotlib.use('Agg')
313
- plt.close()
314
-
315
- # loggers
316
- for k, v in loggers.items() or {}:
317
- if k == 'wandb' and v:
318
- v.log({"Labels": [v.Image(str(x), caption=x.name) for x in save_dir.glob('*labels*.jpg')]}, commit=False)
319
-
320
-
321
- def plot_evolution(yaml_file='data/hyp.finetune.yaml'): # from utils.plots import *; plot_evolution()
322
- # Plot hyperparameter evolution results in evolve.txt
323
- with open(yaml_file) as f:
324
- hyp = yaml.load(f, Loader=yaml.SafeLoader)
325
- x = np.loadtxt('evolve.txt', ndmin=2)
326
- f = fitness(x)
327
- # weights = (f - f.min()) ** 2 # for weighted results
328
- plt.figure(figsize=(10, 12), tight_layout=True)
329
- matplotlib.rc('font', **{'size': 8})
330
- for i, (k, v) in enumerate(hyp.items()):
331
- y = x[:, i + 7]
332
- # mu = (y * weights).sum() / weights.sum() # best weighted result
333
- mu = y[f.argmax()] # best single result
334
- plt.subplot(6, 5, i + 1)
335
- plt.scatter(y, f, c=hist2d(y, f, 20), cmap='viridis', alpha=.8, edgecolors='none')
336
- plt.plot(mu, f.max(), 'k+', markersize=15)
337
- plt.title('%s = %.3g' % (k, mu), fontdict={'size': 9}) # limit to 40 characters
338
- if i % 5 != 0:
339
- plt.yticks([])
340
- print('%15s: %.3g' % (k, mu))
341
- plt.savefig('evolve.png', dpi=200)
342
- print('\nPlot saved as evolve.png')
343
-
344
-
345
- def profile_idetection(start=0, stop=0, labels=(), save_dir=''):
346
- # Plot iDetection '*.txt' per-image logs. from utils.plots import *; profile_idetection()
347
- ax = plt.subplots(2, 4, figsize=(12, 6), tight_layout=True)[1].ravel()
348
- s = ['Images', 'Free Storage (GB)', 'RAM Usage (GB)', 'Battery', 'dt_raw (ms)', 'dt_smooth (ms)', 'real-world FPS']
349
- files = list(Path(save_dir).glob('frames*.txt'))
350
- for fi, f in enumerate(files):
351
- try:
352
- results = np.loadtxt(f, ndmin=2).T[:, 90:-30] # clip first and last rows
353
- n = results.shape[1] # number of rows
354
- x = np.arange(start, min(stop, n) if stop else n)
355
- results = results[:, x]
356
- t = (results[0] - results[0].min()) # set t0=0s
357
- results[0] = x
358
- for i, a in enumerate(ax):
359
- if i < len(results):
360
- label = labels[fi] if len(labels) else f.stem.replace('frames_', '')
361
- a.plot(t, results[i], marker='.', label=label, linewidth=1, markersize=5)
362
- a.set_title(s[i])
363
- a.set_xlabel('time (s)')
364
- # if fi == len(files) - 1:
365
- # a.set_ylim(bottom=0)
366
- for side in ['top', 'right']:
367
- a.spines[side].set_visible(False)
368
- else:
369
- a.remove()
370
- except Exception as e:
371
- print('Warning: Plotting error for %s; %s' % (f, e))
372
-
373
- ax[1].legend()
374
- plt.savefig(Path(save_dir) / 'idetection_profile.png', dpi=200)
375
-
376
-
377
- def plot_results_overlay(start=0, stop=0): # from utils.plots import *; plot_results_overlay()
378
- # Plot training 'results*.txt', overlaying train and val losses
379
- s = ['train', 'train', 'train', 'Precision', 'mAP@0.5', 'val', 'val', 'val', 'Recall', 'mAP@0.5:0.95'] # legends
380
- t = ['Box', 'Objectness', 'Classification', 'P-R', 'mAP-F1'] # titles
381
- for f in sorted(glob.glob('results*.txt') + glob.glob('../../Downloads/results*.txt')):
382
- results = np.loadtxt(f, usecols=[2, 3, 4, 8, 9, 12, 13, 14, 10, 11], ndmin=2).T
383
- n = results.shape[1] # number of rows
384
- x = range(start, min(stop, n) if stop else n)
385
- fig, ax = plt.subplots(1, 5, figsize=(14, 3.5), tight_layout=True)
386
- ax = ax.ravel()
387
- for i in range(5):
388
- for j in [i, i + 5]:
389
- y = results[j, x]
390
- ax[i].plot(x, y, marker='.', label=s[j])
391
- # y_smooth = butter_lowpass_filtfilt(y)
392
- # ax[i].plot(x, np.gradient(y_smooth), marker='.', label=s[j])
393
-
394
- ax[i].set_title(t[i])
395
- ax[i].legend()
396
- ax[i].set_ylabel(f) if i == 0 else None # add filename
397
- fig.savefig(f.replace('.txt', '.png'), dpi=200)
398
-
399
-
400
- def plot_results(start=0, stop=0, bucket='', id=(), labels=(), save_dir=''):
401
- # Plot training 'results*.txt'. from utils.plots import *; plot_results(save_dir='runs/train/exp')
402
- fig, ax = plt.subplots(2, 5, figsize=(12, 6), tight_layout=True)
403
- ax = ax.ravel()
404
- s = ['Box', 'Objectness', 'Classification', 'Precision', 'Recall',
405
- 'val Box', 'val Objectness', 'val Classification', 'mAP@0.5', 'mAP@0.5:0.95']
406
- if bucket:
407
- # files = ['https://storage.googleapis.com/%s/results%g.txt' % (bucket, x) for x in id]
408
- files = ['results%g.txt' % x for x in id]
409
- c = ('gsutil cp ' + '%s ' * len(files) + '.') % tuple('gs://%s/results%g.txt' % (bucket, x) for x in id)
410
- os.system(c)
411
- else:
412
- files = list(Path(save_dir).glob('results*.txt'))
413
- assert len(files), 'No results.txt files found in %s, nothing to plot.' % os.path.abspath(save_dir)
414
- for fi, f in enumerate(files):
415
- try:
416
- results = np.loadtxt(f, usecols=[2, 3, 4, 8, 9, 12, 13, 14, 10, 11], ndmin=2).T
417
- n = results.shape[1] # number of rows
418
- x = range(start, min(stop, n) if stop else n)
419
- for i in range(10):
420
- y = results[i, x]
421
- if i in [0, 1, 2, 5, 6, 7]:
422
- y[y == 0] = np.nan # don't show zero loss values
423
- # y /= y[0] # normalize
424
- label = labels[fi] if len(labels) else f.stem
425
- ax[i].plot(x, y, marker='.', label=label, linewidth=2, markersize=8)
426
- ax[i].set_title(s[i])
427
- # if i in [5, 6, 7]: # share train and val loss y axes
428
- # ax[i].get_shared_y_axes().join(ax[i], ax[i - 5])
429
- except Exception as e:
430
- print('Warning: Plotting error for %s; %s' % (f, e))
431
-
432
- ax[1].legend()
433
- fig.savefig(Path(save_dir) / 'results.png', dpi=200)
434
-
435
-
436
- def output_to_keypoint(output):
437
- # Convert model output to target format [batch_id, class_id, x, y, w, h, conf]
438
- targets = []
439
- for i, o in enumerate(output):
440
- kpts = o[:,6:]
441
- o = o[:,:6]
442
- for index, (*box, conf, cls) in enumerate(o.detach().cpu().numpy()):
443
- targets.append([i, cls, *list(*xyxy2xywh(np.array(box)[None])), conf, *list(kpts.detach().cpu().numpy()[index])])
444
- return np.array(targets)
445
-
446
-
447
- def plot_skeleton_kpts(im, kpts, steps, orig_shape=None):
448
- #Plot the skeleton and keypointsfor coco datatset
449
- palette = np.array([[255, 128, 0], [255, 153, 51], [255, 178, 102],
450
- [230, 230, 0], [255, 153, 255], [153, 204, 255],
451
- [255, 102, 255], [255, 51, 255], [102, 178, 255],
452
- [51, 153, 255], [255, 153, 153], [255, 102, 102],
453
- [255, 51, 51], [153, 255, 153], [102, 255, 102],
454
- [51, 255, 51], [0, 255, 0], [0, 0, 255], [255, 0, 0],
455
- [255, 255, 255]])
456
-
457
- skeleton = [[16, 14], [14, 12], [17, 15], [15, 13], [12, 13], [6, 12],
458
- [7, 13], [6, 7], [6, 8], [7, 9], [8, 10], [9, 11], [2, 3],
459
- [1, 2], [1, 3], [2, 4], [3, 5], [4, 6], [5, 7]]
460
-
461
- pose_limb_color = palette[[9, 9, 9, 9, 7, 7, 7, 0, 0, 0, 0, 0, 16, 16, 16, 16, 16, 16, 16]]
462
- pose_kpt_color = palette[[16, 16, 16, 16, 16, 0, 0, 0, 0, 0, 0, 9, 9, 9, 9, 9, 9]]
463
- radius = 5
464
- num_kpts = len(kpts) // steps
465
-
466
- for kid in range(num_kpts):
467
- r, g, b = pose_kpt_color[kid]
468
- x_coord, y_coord = kpts[steps * kid], kpts[steps * kid + 1]
469
- if not (x_coord % 640 == 0 or y_coord % 640 == 0):
470
- if steps == 3:
471
- conf = kpts[steps * kid + 2]
472
- if conf < 0.5:
473
- continue
474
- cv2.circle(im, (int(x_coord), int(y_coord)), radius, (int(r), int(g), int(b)), -1)
475
-
476
- for sk_id, sk in enumerate(skeleton):
477
- r, g, b = pose_limb_color[sk_id]
478
- pos1 = (int(kpts[(sk[0]-1)*steps]), int(kpts[(sk[0]-1)*steps+1]))
479
- pos2 = (int(kpts[(sk[1]-1)*steps]), int(kpts[(sk[1]-1)*steps+1]))
480
- if steps == 3:
481
- conf1 = kpts[(sk[0]-1)*steps+2]
482
- conf2 = kpts[(sk[1]-1)*steps+2]
483
- if conf1<0.5 or conf2<0.5:
484
- continue
485
- if pos1[0]%640 == 0 or pos1[1]%640==0 or pos1[0]<0 or pos1[1]<0:
486
- continue
487
- if pos2[0] % 640 == 0 or pos2[1] % 640 == 0 or pos2[0]<0 or pos2[1]<0:
488
- continue
489
- cv2.line(im, pos1, pos2, (int(r), int(g), int(b)), thickness=2)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
utils/torch_utils.py DELETED
@@ -1,374 +0,0 @@
1
- # YOLOR PyTorch utils
2
-
3
- import datetime
4
- import logging
5
- import math
6
- import os
7
- import platform
8
- import subprocess
9
- import time
10
- from contextlib import contextmanager
11
- from copy import deepcopy
12
- from pathlib import Path
13
-
14
- import torch
15
- import torch.backends.cudnn as cudnn
16
- import torch.nn as nn
17
- import torch.nn.functional as F
18
- import torchvision
19
-
20
- try:
21
- import thop # for FLOPS computation
22
- except ImportError:
23
- thop = None
24
- logger = logging.getLogger(__name__)
25
-
26
-
27
- @contextmanager
28
- def torch_distributed_zero_first(local_rank: int):
29
- """
30
- Decorator to make all processes in distributed training wait for each local_master to do something.
31
- """
32
- if local_rank not in [-1, 0]:
33
- torch.distributed.barrier()
34
- yield
35
- if local_rank == 0:
36
- torch.distributed.barrier()
37
-
38
-
39
- def init_torch_seeds(seed=0):
40
- # Speed-reproducibility tradeoff https://pytorch.org/docs/stable/notes/randomness.html
41
- torch.manual_seed(seed)
42
- if seed == 0: # slower, more reproducible
43
- cudnn.benchmark, cudnn.deterministic = False, True
44
- else: # faster, less reproducible
45
- cudnn.benchmark, cudnn.deterministic = True, False
46
-
47
-
48
- def date_modified(path=__file__):
49
- # return human-readable file modification date, i.e. '2021-3-26'
50
- t = datetime.datetime.fromtimestamp(Path(path).stat().st_mtime)
51
- return f'{t.year}-{t.month}-{t.day}'
52
-
53
-
54
- def git_describe(path=Path(__file__).parent): # path must be a directory
55
- # return human-readable git description, i.e. v5.0-5-g3e25f1e https://git-scm.com/docs/git-describe
56
- s = f'git -C {path} describe --tags --long --always'
57
- try:
58
- return subprocess.check_output(s, shell=True, stderr=subprocess.STDOUT).decode()[:-1]
59
- except subprocess.CalledProcessError as e:
60
- return '' # not a git repository
61
-
62
-
63
- def select_device(device='', batch_size=None):
64
- # device = 'cpu' or '0' or '0,1,2,3'
65
- s = f'YOLOR 🚀 {git_describe() or date_modified()} torch {torch.__version__} ' # string
66
- cpu = device.lower() == 'cpu'
67
- if cpu:
68
- os.environ['CUDA_VISIBLE_DEVICES'] = '-1' # force torch.cuda.is_available() = False
69
- elif device: # non-cpu device requested
70
- os.environ['CUDA_VISIBLE_DEVICES'] = device # set environment variable
71
- assert torch.cuda.is_available(), f'CUDA unavailable, invalid device {device} requested' # check availability
72
-
73
- cuda = not cpu and torch.cuda.is_available()
74
- if cuda:
75
- n = torch.cuda.device_count()
76
- if n > 1 and batch_size: # check that batch_size is compatible with device_count
77
- assert batch_size % n == 0, f'batch-size {batch_size} not multiple of GPU count {n}'
78
- space = ' ' * len(s)
79
- for i, d in enumerate(device.split(',') if device else range(n)):
80
- p = torch.cuda.get_device_properties(i)
81
- s += f"{'' if i == 0 else space}CUDA:{d} ({p.name}, {p.total_memory / 1024 ** 2}MB)\n" # bytes to MB
82
- else:
83
- s += 'CPU\n'
84
-
85
- logger.info(s.encode().decode('ascii', 'ignore') if platform.system() == 'Windows' else s) # emoji-safe
86
- return torch.device('cuda:0' if cuda else 'cpu')
87
-
88
-
89
- def time_synchronized():
90
- # pytorch-accurate time
91
- if torch.cuda.is_available():
92
- torch.cuda.synchronize()
93
- return time.time()
94
-
95
-
96
- def profile(x, ops, n=100, device=None):
97
- # profile a pytorch module or list of modules. Example usage:
98
- # x = torch.randn(16, 3, 640, 640) # input
99
- # m1 = lambda x: x * torch.sigmoid(x)
100
- # m2 = nn.SiLU()
101
- # profile(x, [m1, m2], n=100) # profile speed over 100 iterations
102
-
103
- device = device or torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
104
- x = x.to(device)
105
- x.requires_grad = True
106
- print(torch.__version__, device.type, torch.cuda.get_device_properties(0) if device.type == 'cuda' else '')
107
- print(f"\n{'Params':>12s}{'GFLOPS':>12s}{'forward (ms)':>16s}{'backward (ms)':>16s}{'input':>24s}{'output':>24s}")
108
- for m in ops if isinstance(ops, list) else [ops]:
109
- m = m.to(device) if hasattr(m, 'to') else m # device
110
- m = m.half() if hasattr(m, 'half') and isinstance(x, torch.Tensor) and x.dtype is torch.float16 else m # type
111
- dtf, dtb, t = 0., 0., [0., 0., 0.] # dt forward, backward
112
- try:
113
- flops = thop.profile(m, inputs=(x,), verbose=False)[0] / 1E9 * 2 # GFLOPS
114
- except:
115
- flops = 0
116
-
117
- for _ in range(n):
118
- t[0] = time_synchronized()
119
- y = m(x)
120
- t[1] = time_synchronized()
121
- try:
122
- _ = y.sum().backward()
123
- t[2] = time_synchronized()
124
- except: # no backward method
125
- t[2] = float('nan')
126
- dtf += (t[1] - t[0]) * 1000 / n # ms per op forward
127
- dtb += (t[2] - t[1]) * 1000 / n # ms per op backward
128
-
129
- s_in = tuple(x.shape) if isinstance(x, torch.Tensor) else 'list'
130
- s_out = tuple(y.shape) if isinstance(y, torch.Tensor) else 'list'
131
- p = sum(list(x.numel() for x in m.parameters())) if isinstance(m, nn.Module) else 0 # parameters
132
- print(f'{p:12}{flops:12.4g}{dtf:16.4g}{dtb:16.4g}{str(s_in):>24s}{str(s_out):>24s}')
133
-
134
-
135
- def is_parallel(model):
136
- return type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel)
137
-
138
-
139
- def intersect_dicts(da, db, exclude=()):
140
- # Dictionary intersection of matching keys and shapes, omitting 'exclude' keys, using da values
141
- return {k: v for k, v in da.items() if k in db and not any(x in k for x in exclude) and v.shape == db[k].shape}
142
-
143
-
144
- def initialize_weights(model):
145
- for m in model.modules():
146
- t = type(m)
147
- if t is nn.Conv2d:
148
- pass # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
149
- elif t is nn.BatchNorm2d:
150
- m.eps = 1e-3
151
- m.momentum = 0.03
152
- elif t in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6]:
153
- m.inplace = True
154
-
155
-
156
- def find_modules(model, mclass=nn.Conv2d):
157
- # Finds layer indices matching module class 'mclass'
158
- return [i for i, m in enumerate(model.module_list) if isinstance(m, mclass)]
159
-
160
-
161
- def sparsity(model):
162
- # Return global model sparsity
163
- a, b = 0., 0.
164
- for p in model.parameters():
165
- a += p.numel()
166
- b += (p == 0).sum()
167
- return b / a
168
-
169
-
170
- def prune(model, amount=0.3):
171
- # Prune model to requested global sparsity
172
- import torch.nn.utils.prune as prune
173
- print('Pruning model... ', end='')
174
- for name, m in model.named_modules():
175
- if isinstance(m, nn.Conv2d):
176
- prune.l1_unstructured(m, name='weight', amount=amount) # prune
177
- prune.remove(m, 'weight') # make permanent
178
- print(' %.3g global sparsity' % sparsity(model))
179
-
180
-
181
- def fuse_conv_and_bn(conv, bn):
182
- # Fuse convolution and batchnorm layers https://tehnokv.com/posts/fusing-batchnorm-and-conv/
183
- fusedconv = nn.Conv2d(conv.in_channels,
184
- conv.out_channels,
185
- kernel_size=conv.kernel_size,
186
- stride=conv.stride,
187
- padding=conv.padding,
188
- groups=conv.groups,
189
- bias=True).requires_grad_(False).to(conv.weight.device)
190
-
191
- # prepare filters
192
- w_conv = conv.weight.clone().view(conv.out_channels, -1)
193
- w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var)))
194
- fusedconv.weight.copy_(torch.mm(w_bn, w_conv).view(fusedconv.weight.shape))
195
-
196
- # prepare spatial bias
197
- b_conv = torch.zeros(conv.weight.size(0), device=conv.weight.device) if conv.bias is None else conv.bias
198
- b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps))
199
- fusedconv.bias.copy_(torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn)
200
-
201
- return fusedconv
202
-
203
-
204
- def model_info(model, verbose=False, img_size=640):
205
- # Model information. img_size may be int or list, i.e. img_size=640 or img_size=[640, 320]
206
- n_p = sum(x.numel() for x in model.parameters()) # number parameters
207
- n_g = sum(x.numel() for x in model.parameters() if x.requires_grad) # number gradients
208
- if verbose:
209
- print('%5s %40s %9s %12s %20s %10s %10s' % ('layer', 'name', 'gradient', 'parameters', 'shape', 'mu', 'sigma'))
210
- for i, (name, p) in enumerate(model.named_parameters()):
211
- name = name.replace('module_list.', '')
212
- print('%5g %40s %9s %12g %20s %10.3g %10.3g' %
213
- (i, name, p.requires_grad, p.numel(), list(p.shape), p.mean(), p.std()))
214
-
215
- try: # FLOPS
216
- from thop import profile
217
- stride = max(int(model.stride.max()), 32) if hasattr(model, 'stride') else 32
218
- img = torch.zeros((1, model.yaml.get('ch', 3), stride, stride), device=next(model.parameters()).device) # input
219
- flops = profile(deepcopy(model), inputs=(img,), verbose=False)[0] / 1E9 * 2 # stride GFLOPS
220
- img_size = img_size if isinstance(img_size, list) else [img_size, img_size] # expand if int/float
221
- fs = ', %.1f GFLOPS' % (flops * img_size[0] / stride * img_size[1] / stride) # 640x640 GFLOPS
222
- except (ImportError, Exception):
223
- fs = ''
224
-
225
- logger.info(f"Model Summary: {len(list(model.modules()))} layers, {n_p} parameters, {n_g} gradients{fs}")
226
-
227
-
228
- def load_classifier(name='resnet101', n=2):
229
- # Loads a pretrained model reshaped to n-class output
230
- model = torchvision.models.__dict__[name](pretrained=True)
231
-
232
- # ResNet model properties
233
- # input_size = [3, 224, 224]
234
- # input_space = 'RGB'
235
- # input_range = [0, 1]
236
- # mean = [0.485, 0.456, 0.406]
237
- # std = [0.229, 0.224, 0.225]
238
-
239
- # Reshape output to n classes
240
- filters = model.fc.weight.shape[1]
241
- model.fc.bias = nn.Parameter(torch.zeros(n), requires_grad=True)
242
- model.fc.weight = nn.Parameter(torch.zeros(n, filters), requires_grad=True)
243
- model.fc.out_features = n
244
- return model
245
-
246
-
247
- def scale_img(img, ratio=1.0, same_shape=False, gs=32): # img(16,3,256,416)
248
- # scales img(bs,3,y,x) by ratio constrained to gs-multiple
249
- if ratio == 1.0:
250
- return img
251
- else:
252
- h, w = img.shape[2:]
253
- s = (int(h * ratio), int(w * ratio)) # new size
254
- img = F.interpolate(img, size=s, mode='bilinear', align_corners=False) # resize
255
- if not same_shape: # pad/crop img
256
- h, w = [math.ceil(x * ratio / gs) * gs for x in (h, w)]
257
- return F.pad(img, [0, w - s[1], 0, h - s[0]], value=0.447) # value = imagenet mean
258
-
259
-
260
- def copy_attr(a, b, include=(), exclude=()):
261
- # Copy attributes from b to a, options to only include [...] and to exclude [...]
262
- for k, v in b.__dict__.items():
263
- if (len(include) and k not in include) or k.startswith('_') or k in exclude:
264
- continue
265
- else:
266
- setattr(a, k, v)
267
-
268
-
269
- class ModelEMA:
270
- """ Model Exponential Moving Average from https://github.com/rwightman/pytorch-image-models
271
- Keep a moving average of everything in the model state_dict (parameters and buffers).
272
- This is intended to allow functionality like
273
- https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage
274
- A smoothed version of the weights is necessary for some training schemes to perform well.
275
- This class is sensitive where it is initialized in the sequence of model init,
276
- GPU assignment and distributed training wrappers.
277
- """
278
-
279
- def __init__(self, model, decay=0.9999, updates=0):
280
- # Create EMA
281
- self.ema = deepcopy(model.module if is_parallel(model) else model).eval() # FP32 EMA
282
- # if next(model.parameters()).device.type != 'cpu':
283
- # self.ema.half() # FP16 EMA
284
- self.updates = updates # number of EMA updates
285
- self.decay = lambda x: decay * (1 - math.exp(-x / 2000)) # decay exponential ramp (to help early epochs)
286
- for p in self.ema.parameters():
287
- p.requires_grad_(False)
288
-
289
- def update(self, model):
290
- # Update EMA parameters
291
- with torch.no_grad():
292
- self.updates += 1
293
- d = self.decay(self.updates)
294
-
295
- msd = model.module.state_dict() if is_parallel(model) else model.state_dict() # model state_dict
296
- for k, v in self.ema.state_dict().items():
297
- if v.dtype.is_floating_point:
298
- v *= d
299
- v += (1. - d) * msd[k].detach()
300
-
301
- def update_attr(self, model, include=(), exclude=('process_group', 'reducer')):
302
- # Update EMA attributes
303
- copy_attr(self.ema, model, include, exclude)
304
-
305
-
306
- class BatchNormXd(torch.nn.modules.batchnorm._BatchNorm):
307
- def _check_input_dim(self, input):
308
- # The only difference between BatchNorm1d, BatchNorm2d, BatchNorm3d, etc
309
- # is this method that is overwritten by the sub-class
310
- # This original goal of this method was for tensor sanity checks
311
- # If you're ok bypassing those sanity checks (eg. if you trust your inference
312
- # to provide the right dimensional inputs), then you can just use this method
313
- # for easy conversion from SyncBatchNorm
314
- # (unfortunately, SyncBatchNorm does not store the original class - if it did
315
- # we could return the one that was originally created)
316
- return
317
-
318
- def revert_sync_batchnorm(module):
319
- # this is very similar to the function that it is trying to revert:
320
- # https://github.com/pytorch/pytorch/blob/c8b3686a3e4ba63dc59e5dcfe5db3430df256833/torch/nn/modules/batchnorm.py#L679
321
- module_output = module
322
- if isinstance(module, torch.nn.modules.batchnorm.SyncBatchNorm):
323
- new_cls = BatchNormXd
324
- module_output = BatchNormXd(module.num_features,
325
- module.eps, module.momentum,
326
- module.affine,
327
- module.track_running_stats)
328
- if module.affine:
329
- with torch.no_grad():
330
- module_output.weight = module.weight
331
- module_output.bias = module.bias
332
- module_output.running_mean = module.running_mean
333
- module_output.running_var = module.running_var
334
- module_output.num_batches_tracked = module.num_batches_tracked
335
- if hasattr(module, "qconfig"):
336
- module_output.qconfig = module.qconfig
337
- for name, child in module.named_children():
338
- module_output.add_module(name, revert_sync_batchnorm(child))
339
- del module
340
- return module_output
341
-
342
-
343
- class TracedModel(nn.Module):
344
-
345
- def __init__(self, model=None, device=None, img_size=(640,640)):
346
- super(TracedModel, self).__init__()
347
-
348
- print(" Convert model to Traced-model... ")
349
- self.stride = model.stride
350
- self.names = model.names
351
- self.model = model
352
-
353
- self.model = revert_sync_batchnorm(self.model)
354
- self.model.to('cpu')
355
- self.model.eval()
356
-
357
- self.detect_layer = self.model.model[-1]
358
- self.model.traced = True
359
-
360
- rand_example = torch.rand(1, 3, img_size, img_size)
361
-
362
- traced_script_module = torch.jit.trace(self.model, rand_example, strict=False)
363
- #traced_script_module = torch.jit.script(self.model)
364
- traced_script_module.save("traced_model.pt")
365
- print(" traced_script_module saved! ")
366
- self.model = traced_script_module
367
- self.model.to(device)
368
- self.detect_layer.to(device)
369
- print(" model is traced! \n")
370
-
371
- def forward(self, x, augment=False, profile=False):
372
- out = self.model(x)
373
- out = self.detect_layer(out)
374
- return out
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
utils/wandb_logging/__init__.py DELETED
@@ -1 +0,0 @@
1
- # init
 
 
utils/wandb_logging/__pycache__/__init__.cpython-310.pyc DELETED
Binary file (188 Bytes)
 
utils/wandb_logging/__pycache__/wandb_utils.cpython-310.pyc DELETED
Binary file (11.4 kB)
 
utils/wandb_logging/log_dataset.py DELETED
@@ -1,24 +0,0 @@
1
- import argparse
2
-
3
- import yaml
4
-
5
- from wandb_utils import WandbLogger
6
-
7
- WANDB_ARTIFACT_PREFIX = 'wandb-artifact://'
8
-
9
-
10
- def create_dataset_artifact(opt):
11
- with open(opt.data) as f:
12
- data = yaml.load(f, Loader=yaml.SafeLoader) # data dict
13
- logger = WandbLogger(opt, '', None, data, job_type='Dataset Creation')
14
-
15
-
16
- if __name__ == '__main__':
17
- parser = argparse.ArgumentParser()
18
- parser.add_argument('--data', type=str, default='data/coco.yaml', help='data.yaml path')
19
- parser.add_argument('--single-cls', action='store_true', help='train as single-class dataset')
20
- parser.add_argument('--project', type=str, default='YOLOR', help='name of W&B Project')
21
- opt = parser.parse_args()
22
- opt.resume = False # Explicitly disallow resume check for dataset upload job
23
-
24
- create_dataset_artifact(opt)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
utils/wandb_logging/wandb_utils.py DELETED
@@ -1,306 +0,0 @@
1
- import json
2
- import sys
3
- from pathlib import Path
4
-
5
- import torch
6
- import yaml
7
- from tqdm import tqdm
8
-
9
- sys.path.append(str(Path(__file__).parent.parent.parent)) # add utils/ to path
10
- from utils.datasets import LoadImagesAndLabels
11
- from utils.datasets import img2label_paths
12
- from utils.general import colorstr, xywh2xyxy, check_dataset
13
-
14
- try:
15
- import wandb
16
- from wandb import init, finish
17
- except ImportError:
18
- wandb = None
19
-
20
- WANDB_ARTIFACT_PREFIX = 'wandb-artifact://'
21
-
22
-
23
- def remove_prefix(from_string, prefix=WANDB_ARTIFACT_PREFIX):
24
- return from_string[len(prefix):]
25
-
26
-
27
- def check_wandb_config_file(data_config_file):
28
- wandb_config = '_wandb.'.join(data_config_file.rsplit('.', 1)) # updated data.yaml path
29
- if Path(wandb_config).is_file():
30
- return wandb_config
31
- return data_config_file
32
-
33
-
34
- def get_run_info(run_path):
35
- run_path = Path(remove_prefix(run_path, WANDB_ARTIFACT_PREFIX))
36
- run_id = run_path.stem
37
- project = run_path.parent.stem
38
- model_artifact_name = 'run_' + run_id + '_model'
39
- return run_id, project, model_artifact_name
40
-
41
-
42
- def check_wandb_resume(opt):
43
- process_wandb_config_ddp_mode(opt) if opt.global_rank not in [-1, 0] else None
44
- if isinstance(opt.resume, str):
45
- if opt.resume.startswith(WANDB_ARTIFACT_PREFIX):
46
- if opt.global_rank not in [-1, 0]: # For resuming DDP runs
47
- run_id, project, model_artifact_name = get_run_info(opt.resume)
48
- api = wandb.Api()
49
- artifact = api.artifact(project + '/' + model_artifact_name + ':latest')
50
- modeldir = artifact.download()
51
- opt.weights = str(Path(modeldir) / "last.pt")
52
- return True
53
- return None
54
-
55
-
56
- def process_wandb_config_ddp_mode(opt):
57
- with open(opt.data) as f:
58
- data_dict = yaml.load(f, Loader=yaml.SafeLoader) # data dict
59
- train_dir, val_dir = None, None
60
- if isinstance(data_dict['train'], str) and data_dict['train'].startswith(WANDB_ARTIFACT_PREFIX):
61
- api = wandb.Api()
62
- train_artifact = api.artifact(remove_prefix(data_dict['train']) + ':' + opt.artifact_alias)
63
- train_dir = train_artifact.download()
64
- train_path = Path(train_dir) / 'data/images/'
65
- data_dict['train'] = str(train_path)
66
-
67
- if isinstance(data_dict['val'], str) and data_dict['val'].startswith(WANDB_ARTIFACT_PREFIX):
68
- api = wandb.Api()
69
- val_artifact = api.artifact(remove_prefix(data_dict['val']) + ':' + opt.artifact_alias)
70
- val_dir = val_artifact.download()
71
- val_path = Path(val_dir) / 'data/images/'
72
- data_dict['val'] = str(val_path)
73
- if train_dir or val_dir:
74
- ddp_data_path = str(Path(val_dir) / 'wandb_local_data.yaml')
75
- with open(ddp_data_path, 'w') as f:
76
- yaml.dump(data_dict, f)
77
- opt.data = ddp_data_path
78
-
79
-
80
- class WandbLogger():
81
- def __init__(self, opt, name, run_id, data_dict, job_type='Training'):
82
- # Pre-training routine --
83
- self.job_type = job_type
84
- self.wandb, self.wandb_run, self.data_dict = wandb, None if not wandb else wandb.run, data_dict
85
- # It's more elegant to stick to 1 wandb.init call, but useful config data is overwritten in the WandbLogger's wandb.init call
86
- if isinstance(opt.resume, str): # checks resume from artifact
87
- if opt.resume.startswith(WANDB_ARTIFACT_PREFIX):
88
- run_id, project, model_artifact_name = get_run_info(opt.resume)
89
- model_artifact_name = WANDB_ARTIFACT_PREFIX + model_artifact_name
90
- assert wandb, 'install wandb to resume wandb runs'
91
- # Resume wandb-artifact:// runs here| workaround for not overwriting wandb.config
92
- self.wandb_run = wandb.init(id=run_id, project=project, resume='allow')
93
- opt.resume = model_artifact_name
94
- elif self.wandb:
95
- self.wandb_run = wandb.init(config=opt,
96
- resume="allow",
97
- project='YOLOR' if opt.project == 'runs/train' else Path(opt.project).stem,
98
- name=name,
99
- job_type=job_type,
100
- id=run_id) if not wandb.run else wandb.run
101
- if self.wandb_run:
102
- if self.job_type == 'Training':
103
- if not opt.resume:
104
- wandb_data_dict = self.check_and_upload_dataset(opt) if opt.upload_dataset else data_dict
105
- # Info useful for resuming from artifacts
106
- self.wandb_run.config.opt = vars(opt)
107
- self.wandb_run.config.data_dict = wandb_data_dict
108
- self.data_dict = self.setup_training(opt, data_dict)
109
- if self.job_type == 'Dataset Creation':
110
- self.data_dict = self.check_and_upload_dataset(opt)
111
- else:
112
- prefix = colorstr('wandb: ')
113
- print(f"{prefix}Install Weights & Biases for YOLOR logging with 'pip install wandb' (recommended)")
114
-
115
- def check_and_upload_dataset(self, opt):
116
- assert wandb, 'Install wandb to upload dataset'
117
- check_dataset(self.data_dict)
118
- config_path = self.log_dataset_artifact(opt.data,
119
- opt.single_cls,
120
- 'YOLOR' if opt.project == 'runs/train' else Path(opt.project).stem)
121
- print("Created dataset config file ", config_path)
122
- with open(config_path) as f:
123
- wandb_data_dict = yaml.load(f, Loader=yaml.SafeLoader)
124
- return wandb_data_dict
125
-
126
- def setup_training(self, opt, data_dict):
127
- self.log_dict, self.current_epoch, self.log_imgs = {}, 0, 16 # Logging Constants
128
- self.bbox_interval = opt.bbox_interval
129
- if isinstance(opt.resume, str):
130
- modeldir, _ = self.download_model_artifact(opt)
131
- if modeldir:
132
- self.weights = Path(modeldir) / "last.pt"
133
- config = self.wandb_run.config
134
- opt.weights, opt.save_period, opt.batch_size, opt.bbox_interval, opt.epochs, opt.hyp = str(
135
- self.weights), config.save_period, config.total_batch_size, config.bbox_interval, config.epochs, \
136
- config.opt['hyp']
137
- data_dict = dict(self.wandb_run.config.data_dict) # eliminates the need for config file to resume
138
- if 'val_artifact' not in self.__dict__: # If --upload_dataset is set, use the existing artifact, don't download
139
- self.train_artifact_path, self.train_artifact = self.download_dataset_artifact(data_dict.get('train'),
140
- opt.artifact_alias)
141
- self.val_artifact_path, self.val_artifact = self.download_dataset_artifact(data_dict.get('val'),
142
- opt.artifact_alias)
143
- self.result_artifact, self.result_table, self.val_table, self.weights = None, None, None, None
144
- if self.train_artifact_path is not None:
145
- train_path = Path(self.train_artifact_path) / 'data/images/'
146
- data_dict['train'] = str(train_path)
147
- if self.val_artifact_path is not None:
148
- val_path = Path(self.val_artifact_path) / 'data/images/'
149
- data_dict['val'] = str(val_path)
150
- self.val_table = self.val_artifact.get("val")
151
- self.map_val_table_path()
152
- if self.val_artifact is not None:
153
- self.result_artifact = wandb.Artifact("run_" + wandb.run.id + "_progress", "evaluation")
154
- self.result_table = wandb.Table(["epoch", "id", "prediction", "avg_confidence"])
155
- if opt.bbox_interval == -1:
156
- self.bbox_interval = opt.bbox_interval = (opt.epochs // 10) if opt.epochs > 10 else 1
157
- return data_dict
158
-
159
- def download_dataset_artifact(self, path, alias):
160
- if isinstance(path, str) and path.startswith(WANDB_ARTIFACT_PREFIX):
161
- dataset_artifact = wandb.use_artifact(remove_prefix(path, WANDB_ARTIFACT_PREFIX) + ":" + alias)
162
- assert dataset_artifact is not None, "'Error: W&B dataset artifact doesn\'t exist'"
163
- datadir = dataset_artifact.download()
164
- return datadir, dataset_artifact
165
- return None, None
166
-
167
- def download_model_artifact(self, opt):
168
- if opt.resume.startswith(WANDB_ARTIFACT_PREFIX):
169
- model_artifact = wandb.use_artifact(remove_prefix(opt.resume, WANDB_ARTIFACT_PREFIX) + ":latest")
170
- assert model_artifact is not None, 'Error: W&B model artifact doesn\'t exist'
171
- modeldir = model_artifact.download()
172
- epochs_trained = model_artifact.metadata.get('epochs_trained')
173
- total_epochs = model_artifact.metadata.get('total_epochs')
174
- assert epochs_trained < total_epochs, 'training to %g epochs is finished, nothing to resume.' % (
175
- total_epochs)
176
- return modeldir, model_artifact
177
- return None, None
178
-
179
- def log_model(self, path, opt, epoch, fitness_score, best_model=False):
180
- model_artifact = wandb.Artifact('run_' + wandb.run.id + '_model', type='model', metadata={
181
- 'original_url': str(path),
182
- 'epochs_trained': epoch + 1,
183
- 'save period': opt.save_period,
184
- 'project': opt.project,
185
- 'total_epochs': opt.epochs,
186
- 'fitness_score': fitness_score
187
- })
188
- model_artifact.add_file(str(path / 'last.pt'), name='last.pt')
189
- wandb.log_artifact(model_artifact,
190
- aliases=['latest', 'epoch ' + str(self.current_epoch), 'best' if best_model else ''])
191
- print("Saving model artifact on epoch ", epoch + 1)
192
-
193
- def log_dataset_artifact(self, data_file, single_cls, project, overwrite_config=False):
194
- with open(data_file) as f:
195
- data = yaml.load(f, Loader=yaml.SafeLoader) # data dict
196
- nc, names = (1, ['item']) if single_cls else (int(data['nc']), data['names'])
197
- names = {k: v for k, v in enumerate(names)} # to index dictionary
198
- self.train_artifact = self.create_dataset_table(LoadImagesAndLabels(
199
- data['train']), names, name='train') if data.get('train') else None
200
- self.val_artifact = self.create_dataset_table(LoadImagesAndLabels(
201
- data['val']), names, name='val') if data.get('val') else None
202
- if data.get('train'):
203
- data['train'] = WANDB_ARTIFACT_PREFIX + str(Path(project) / 'train')
204
- if data.get('val'):
205
- data['val'] = WANDB_ARTIFACT_PREFIX + str(Path(project) / 'val')
206
- path = data_file if overwrite_config else '_wandb.'.join(data_file.rsplit('.', 1)) # updated data.yaml path
207
- data.pop('download', None)
208
- with open(path, 'w') as f:
209
- yaml.dump(data, f)
210
-
211
- if self.job_type == 'Training': # builds correct artifact pipeline graph
212
- self.wandb_run.use_artifact(self.val_artifact)
213
- self.wandb_run.use_artifact(self.train_artifact)
214
- self.val_artifact.wait()
215
- self.val_table = self.val_artifact.get('val')
216
- self.map_val_table_path()
217
- else:
218
- self.wandb_run.log_artifact(self.train_artifact)
219
- self.wandb_run.log_artifact(self.val_artifact)
220
- return path
221
-
222
- def map_val_table_path(self):
223
- self.val_table_map = {}
224
- print("Mapping dataset")
225
- for i, data in enumerate(tqdm(self.val_table.data)):
226
- self.val_table_map[data[3]] = data[0]
227
-
228
- def create_dataset_table(self, dataset, class_to_id, name='dataset'):
229
- # TODO: Explore multiprocessing to slpit this loop parallely| This is essential for speeding up the the logging
230
- artifact = wandb.Artifact(name=name, type="dataset")
231
- img_files = tqdm([dataset.path]) if isinstance(dataset.path, str) and Path(dataset.path).is_dir() else None
232
- img_files = tqdm(dataset.img_files) if not img_files else img_files
233
- for img_file in img_files:
234
- if Path(img_file).is_dir():
235
- artifact.add_dir(img_file, name='data/images')
236
- labels_path = 'labels'.join(dataset.path.rsplit('images', 1))
237
- artifact.add_dir(labels_path, name='data/labels')
238
- else:
239
- artifact.add_file(img_file, name='data/images/' + Path(img_file).name)
240
- label_file = Path(img2label_paths([img_file])[0])
241
- artifact.add_file(str(label_file),
242
- name='data/labels/' + label_file.name) if label_file.exists() else None
243
- table = wandb.Table(columns=["id", "train_image", "Classes", "name"])
244
- class_set = wandb.Classes([{'id': id, 'name': name} for id, name in class_to_id.items()])
245
- for si, (img, labels, paths, shapes) in enumerate(tqdm(dataset)):
246
- height, width = shapes[0]
247
- labels[:, 2:] = (xywh2xyxy(labels[:, 2:].view(-1, 4))) * torch.Tensor([width, height, width, height])
248
- box_data, img_classes = [], {}
249
- for cls, *xyxy in labels[:, 1:].tolist():
250
- cls = int(cls)
251
- box_data.append({"position": {"minX": xyxy[0], "minY": xyxy[1], "maxX": xyxy[2], "maxY": xyxy[3]},
252
- "class_id": cls,
253
- "box_caption": "%s" % (class_to_id[cls]),
254
- "scores": {"acc": 1},
255
- "domain": "pixel"})
256
- img_classes[cls] = class_to_id[cls]
257
- boxes = {"ground_truth": {"box_data": box_data, "class_labels": class_to_id}} # inference-space
258
- table.add_data(si, wandb.Image(paths, classes=class_set, boxes=boxes), json.dumps(img_classes),
259
- Path(paths).name)
260
- artifact.add(table, name)
261
- return artifact
262
-
263
- def log_training_progress(self, predn, path, names):
264
- if self.val_table and self.result_table:
265
- class_set = wandb.Classes([{'id': id, 'name': name} for id, name in names.items()])
266
- box_data = []
267
- total_conf = 0
268
- for *xyxy, conf, cls in predn.tolist():
269
- if conf >= 0.25:
270
- box_data.append(
271
- {"position": {"minX": xyxy[0], "minY": xyxy[1], "maxX": xyxy[2], "maxY": xyxy[3]},
272
- "class_id": int(cls),
273
- "box_caption": "%s %.3f" % (names[cls], conf),
274
- "scores": {"class_score": conf},
275
- "domain": "pixel"})
276
- total_conf = total_conf + conf
277
- boxes = {"predictions": {"box_data": box_data, "class_labels": names}} # inference-space
278
- id = self.val_table_map[Path(path).name]
279
- self.result_table.add_data(self.current_epoch,
280
- id,
281
- wandb.Image(self.val_table.data[id][1], boxes=boxes, classes=class_set),
282
- total_conf / max(1, len(box_data))
283
- )
284
-
285
- def log(self, log_dict):
286
- if self.wandb_run:
287
- for key, value in log_dict.items():
288
- self.log_dict[key] = value
289
-
290
- def end_epoch(self, best_result=False):
291
- if self.wandb_run:
292
- wandb.log(self.log_dict)
293
- self.log_dict = {}
294
- if self.result_artifact:
295
- train_results = wandb.JoinedTable(self.val_table, self.result_table, "id")
296
- self.result_artifact.add(train_results, 'result')
297
- wandb.log_artifact(self.result_artifact, aliases=['latest', 'epoch ' + str(self.current_epoch),
298
- ('best' if best_result else '')])
299
- self.result_table = wandb.Table(["epoch", "id", "prediction", "avg_confidence"])
300
- self.result_artifact = wandb.Artifact("run_" + wandb.run.id + "_progress", "evaluation")
301
-
302
- def finish_run(self):
303
- if self.wandb_run:
304
- if self.log_dict:
305
- wandb.log(self.log_dict)
306
- wandb.run.finish()