cardetection / utils /add_nms.py
lnky's picture
Upload 41 files
ec5a6b4 verified
raw
history blame
5.62 kB
import numpy as np
import onnx
from onnx import shape_inference
try:
import onnx_graphsurgeon as gs
except Exception as e:
print('Import onnx_graphsurgeon failure: %s' % e)
import logging
LOGGER = logging.getLogger(__name__)
class RegisterNMS(object):
def __init__(
self,
onnx_model_path: str,
precision: str = "fp32",
):
self.graph = gs.import_onnx(onnx.load(onnx_model_path))
assert self.graph
LOGGER.info("ONNX graph created successfully")
# Fold constants via ONNX-GS that PyTorch2ONNX may have missed
self.graph.fold_constants()
self.precision = precision
self.batch_size = 1
def infer(self):
"""
Sanitize the graph by cleaning any unconnected nodes, do a topological resort,
and fold constant inputs values. When possible, run shape inference on the
ONNX graph to determine tensor shapes.
"""
for _ in range(3):
count_before = len(self.graph.nodes)
self.graph.cleanup().toposort()
try:
for node in self.graph.nodes:
for o in node.outputs:
o.shape = None
model = gs.export_onnx(self.graph)
model = shape_inference.infer_shapes(model)
self.graph = gs.import_onnx(model)
except Exception as e:
LOGGER.info(f"Shape inference could not be performed at this time:\n{e}")
try:
self.graph.fold_constants(fold_shapes=True)
except TypeError as e:
LOGGER.error(
"This version of ONNX GraphSurgeon does not support folding shapes, "
f"please upgrade your onnx_graphsurgeon module. Error:\n{e}"
)
raise
count_after = len(self.graph.nodes)
if count_before == count_after:
# No new folding occurred in this iteration, so we can stop for now.
break
def save(self, output_path):
"""
Save the ONNX model to the given location.
Args:
output_path: Path pointing to the location where to write
out the updated ONNX model.
"""
self.graph.cleanup().toposort()
model = gs.export_onnx(self.graph)
onnx.save(model, output_path)
LOGGER.info(f"Saved ONNX model to {output_path}")
def register_nms(
self,
*,
score_thresh: float = 0.25,
nms_thresh: float = 0.45,
detections_per_img: int = 100,
):
"""
Register the ``EfficientNMS_TRT`` plugin node.
NMS expects these shapes for its input tensors:
- box_net: [batch_size, number_boxes, 4]
- class_net: [batch_size, number_boxes, number_labels]
Args:
score_thresh (float): The scalar threshold for score (low scoring boxes are removed).
nms_thresh (float): The scalar threshold for IOU (new boxes that have high IOU
overlap with previously selected boxes are removed).
detections_per_img (int): Number of best detections to keep after NMS.
"""
self.infer()
# Find the concat node at the end of the network
op_inputs = self.graph.outputs
op = "EfficientNMS_TRT"
attrs = {
"plugin_version": "1",
"background_class": -1, # no background class
"max_output_boxes": detections_per_img,
"score_threshold": score_thresh,
"iou_threshold": nms_thresh,
"score_activation": False,
"box_coding": 0,
}
if self.precision == "fp32":
dtype_output = np.float32
elif self.precision == "fp16":
dtype_output = np.float16
else:
raise NotImplementedError(f"Currently not supports precision: {self.precision}")
# NMS Outputs
output_num_detections = gs.Variable(
name="num_dets",
dtype=np.int32,
shape=[self.batch_size, 1],
) # A scalar indicating the number of valid detections per batch image.
output_boxes = gs.Variable(
name="det_boxes",
dtype=dtype_output,
shape=[self.batch_size, detections_per_img, 4],
)
output_scores = gs.Variable(
name="det_scores",
dtype=dtype_output,
shape=[self.batch_size, detections_per_img],
)
output_labels = gs.Variable(
name="det_classes",
dtype=np.int32,
shape=[self.batch_size, detections_per_img],
)
op_outputs = [output_num_detections, output_boxes, output_scores, output_labels]
# Create the NMS Plugin node with the selected inputs. The outputs of the node will also
# become the final outputs of the graph.
self.graph.layer(op=op, name="batched_nms", inputs=op_inputs, outputs=op_outputs, attrs=attrs)
LOGGER.info(f"Created NMS plugin '{op}' with attributes: {attrs}")
self.graph.outputs = op_outputs
self.infer()
def save(self, output_path):
"""
Save the ONNX model to the given location.
Args:
output_path: Path pointing to the location where to write
out the updated ONNX model.
"""
self.graph.cleanup().toposort()
model = gs.export_onnx(self.graph)
onnx.save(model, output_path)
LOGGER.info(f"Saved ONNX model to {output_path}")