Spaces:
Running
Running
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from PIL import Image
|
4 |
+
from ultralytics import YOLO
|
5 |
+
|
6 |
+
model = YOLO(r'pcb-best.pt')
|
7 |
+
|
8 |
+
def predict(img, conf, iou):
|
9 |
+
results = model.predict(img, conf=conf, iou=iou)
|
10 |
+
for i, r in enumerate(results):
|
11 |
+
# Plot results image
|
12 |
+
im_bgr = r.plot() # BGR-order numpy array
|
13 |
+
im_rgb = Image.fromarray(im_bgr[..., ::-1]) # RGB-order PIL image
|
14 |
+
|
15 |
+
# Show results to screen (in supported environments)
|
16 |
+
return im_rgb
|
17 |
+
|
18 |
+
|
19 |
+
base_conf, base_iou = 0.25, 0.45
|
20 |
+
title = "基于YOLO-V8的PCB电路板缺陷检测"
|
21 |
+
des = "鼠标点击上传图片即可检测缺陷,可通过鼠标调整预测置信度,还可点击网页最下方示例图片进行预测"
|
22 |
+
gr.Interface(inputs=['image',gr.Slider(maximum=1, minimum=0, value=base_conf), gr.Slider(maximum=1, minimum=0, value=base_iou)],
|
23 |
+
outputs=["image"], examples='example1.jpg', fn=predict, title=title, description=des).launch()
|
24 |
+
|