Spaces:
Sleeping
Sleeping
修改配置文件:使用cpu
Browse files- ultralytics/cfg/default.yaml +114 -114
ultralytics/cfg/default.yaml
CHANGED
@@ -1,114 +1,114 @@
|
|
1 |
-
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
2 |
-
# Default training settings and hyperparameters for medium-augmentation COCO training
|
3 |
-
|
4 |
-
task: detect # (str) YOLO task, i.e. detect, segment, classify, pose
|
5 |
-
mode: train # (str) YOLO mode, i.e. train, val, predict, export, track, benchmark
|
6 |
-
|
7 |
-
# Train settings -------------------------------------------------------------------------------------------------------
|
8 |
-
model: # (str, optional) path to model file, i.e. yolov8n.pt, yolov8n.yaml
|
9 |
-
data: # (str, optional) path to data file, i.e. coco128.yaml
|
10 |
-
epochs: 100 # (int) number of epochs to train for
|
11 |
-
patience: 50 # (int) epochs to wait for no observable improvement for early stopping of training
|
12 |
-
batch: -1 # (int) number of images per batch (-1 for AutoBatch)
|
13 |
-
imgsz: 640 # (int | list) input images size as int for train and val modes, or list[w,h] for predict and export modes
|
14 |
-
save: True # (bool) save train checkpoints and predict results
|
15 |
-
save_period: -1 # (int) Save checkpoint every x epochs (disabled if < 1)
|
16 |
-
cache: False # (bool) True/ram, disk or False. Use cache for data loading
|
17 |
-
device:
|
18 |
-
workers: 2 # (int) number of worker threads for data loading (per RANK if DDP)
|
19 |
-
project: # (str, optional) project name
|
20 |
-
name: # (str, optional) experiment name, results saved to 'project/name' directory
|
21 |
-
exist_ok: True # (bool) whether to overwrite existing experiment
|
22 |
-
pretrained: True # (bool | str) whether to use a pretrained model (bool) or a model to load weights from (str)
|
23 |
-
optimizer: auto # (str) optimizer to use, choices=[SGD, Adam, Adamax, AdamW, NAdam, RAdam, RMSProp, auto]
|
24 |
-
verbose: True # (bool) whether to print verbose output
|
25 |
-
seed: 0 # (int) random seed for reproducibility
|
26 |
-
deterministic: True # (bool) whether to enable deterministic mode
|
27 |
-
single_cls: False # (bool) train multi-class data as single-class
|
28 |
-
rect: False # (bool) rectangular training if mode='train' or rectangular validation if mode='val'
|
29 |
-
cos_lr: False # (bool) use cosine learning rate scheduler
|
30 |
-
close_mosaic: 10 # (int) disable mosaic augmentation for final epochs
|
31 |
-
resume: False # (bool) resume training from last checkpoint
|
32 |
-
amp: False # (bool) Automatic Mixed Precision (AMP) training, choices=[True, False], True runs AMP check
|
33 |
-
fraction: 1.0 # (float) dataset fraction to train on (default is 1.0, all images in train set)
|
34 |
-
profile: False # (bool) profile ONNX and TensorRT speeds during training for loggers
|
35 |
-
# Segmentation
|
36 |
-
overlap_mask: True # (bool) masks should overlap during training (segment train only)
|
37 |
-
mask_ratio: 4 # (int) mask downsample ratio (segment train only)
|
38 |
-
# Classification
|
39 |
-
dropout: 0.0 # (float) use dropout regularization (classify train only)
|
40 |
-
|
41 |
-
# Val/Test settings ----------------------------------------------------------------------------------------------------
|
42 |
-
val: True # (bool) validate/test during training
|
43 |
-
split: val # (str) dataset split to use for validation, i.e. 'val', 'test' or 'train'
|
44 |
-
save_json: True # (bool) save results to JSON file
|
45 |
-
save_hybrid: False # (bool) save hybrid version of labels (labels + additional predictions)
|
46 |
-
conf: # (float, optional) object confidence threshold for detection (default 0.25 predict, 0.001 val)
|
47 |
-
iou: 0.7 # (float) intersection over union (IoU) threshold for NMS
|
48 |
-
max_det: 300 # (int) maximum number of detections per image
|
49 |
-
half: False # (bool) use half precision (FP16)
|
50 |
-
dnn: False # (bool) use OpenCV DNN for ONNX inference
|
51 |
-
plots: True # (bool) save plots during train/val
|
52 |
-
|
53 |
-
# Prediction settings --------------------------------------------------------------------------------------------------
|
54 |
-
source: # (str, optional) source directory for images or videos
|
55 |
-
show: False # (bool) show results if possible
|
56 |
-
save_txt: False # (bool) save results as .txt file
|
57 |
-
save_conf: False # (bool) save results with confidence scores
|
58 |
-
save_crop: False # (bool) save cropped images with results
|
59 |
-
show_labels: True # (bool) show object labels in plots
|
60 |
-
show_conf: True # (bool) show object confidence scores in plots
|
61 |
-
vid_stride: 1 # (int) video frame-rate stride
|
62 |
-
line_width: # (int, optional) line width of the bounding boxes, auto if missing
|
63 |
-
visualize: False # (bool) visualize model features
|
64 |
-
augment: False # (bool) apply image augmentation to prediction sources
|
65 |
-
agnostic_nms: False # (bool) class-agnostic NMS
|
66 |
-
classes: # (int | list[int], optional) filter results by class, i.e. class=0, or class=[0,2,3]
|
67 |
-
retina_masks: False # (bool) use high-resolution segmentation masks
|
68 |
-
boxes: True # (bool) Show boxes in segmentation predictions
|
69 |
-
|
70 |
-
# Export settings ------------------------------------------------------------------------------------------------------
|
71 |
-
format: torchscript # (str) format to export to, choices at https://docs.ultralytics.com/modes/export/#export-formats
|
72 |
-
keras: False # (bool) use Kera=s
|
73 |
-
optimize: False # (bool) TorchScript: optimize for mobile
|
74 |
-
int8: False # (bool) CoreML/TF INT8 quantization
|
75 |
-
dynamic: False # (bool) ONNX/TF/TensorRT: dynamic axes
|
76 |
-
simplify: False # (bool) ONNX: simplify model
|
77 |
-
opset: # (int, optional) ONNX: opset version
|
78 |
-
workspace: 4 # (int) TensorRT: workspace size (GB)
|
79 |
-
nms: False # (bool) CoreML: add NMS
|
80 |
-
|
81 |
-
# Hyperparameters ------------------------------------------------------------------------------------------------------
|
82 |
-
lr0: 0.01 # (float) initial learning rate (i.e. SGD=1E-2, Adam=1E-3)
|
83 |
-
lrf: 0.01 # (float) final learning rate (lr0 * lrf)
|
84 |
-
momentum: 0.937 # (float) SGD momentum/Adam beta1
|
85 |
-
weight_decay: 0.0005 # (float) optimizer weight decay 5e-4
|
86 |
-
warmup_epochs: 3.0 # (float) warmup epochs (fractions ok)
|
87 |
-
warmup_momentum: 0.8 # (float) warmup initial momentum
|
88 |
-
warmup_bias_lr: 0.1 # (float) warmup initial bias lr
|
89 |
-
box: 7.5 # (float) box loss gain
|
90 |
-
cls: 0.5 # (float) cls loss gain (scale with pixels)
|
91 |
-
dfl: 1.5 # (float) dfl loss gain
|
92 |
-
pose: 12.0 # (float) pose loss gain
|
93 |
-
kobj: 1.0 # (float) keypoint obj loss gain
|
94 |
-
label_smoothing: 0.0 # (float) label smoothing (fraction)
|
95 |
-
nbs: 64 # (int) nominal batch size
|
96 |
-
hsv_h: 0.015 # (float) image HSV-Hue augmentation (fraction)
|
97 |
-
hsv_s: 0.7 # (float) image HSV-Saturation augmentation (fraction)
|
98 |
-
hsv_v: 0.4 # (float) image HSV-Value augmentation (fraction)
|
99 |
-
degrees: 0.0 # (float) image rotation (+/- deg)
|
100 |
-
translate: 0.1 # (float) image translation (+/- fraction)
|
101 |
-
scale: 0.5 # (float) image scale (+/- gain)
|
102 |
-
shear: 0.0 # (float) image shear (+/- deg)
|
103 |
-
perspective: 0.0 # (float) image perspective (+/- fraction), range 0-0.001
|
104 |
-
flipud: 0.0 # (float) image flip up-down (probability)
|
105 |
-
fliplr: 0.5 # (float) image flip left-right (probability)
|
106 |
-
mosaic: 1.0 # (float) image mosaic (probability)
|
107 |
-
mixup: 0.0 # (float) image mixup (probability)
|
108 |
-
copy_paste: 0.0 # (float) segment copy-paste (probability)
|
109 |
-
|
110 |
-
# Custom config.yaml ---------------------------------------------------------------------------------------------------
|
111 |
-
cfg: # (str, optional) for overriding defaults.yaml
|
112 |
-
save_dir: ./runs/train1 # 自己设置路径
|
113 |
-
# Tracker settings ------------------------------------------------------------------------------------------------------
|
114 |
-
tracker: botsort.yaml # (str) tracker type, choices=[botsort.yaml, bytetrack.yaml]
|
|
|
1 |
+
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
2 |
+
# Default training settings and hyperparameters for medium-augmentation COCO training
|
3 |
+
|
4 |
+
task: detect # (str) YOLO task, i.e. detect, segment, classify, pose
|
5 |
+
mode: train # (str) YOLO mode, i.e. train, val, predict, export, track, benchmark
|
6 |
+
|
7 |
+
# Train settings -------------------------------------------------------------------------------------------------------
|
8 |
+
model: # (str, optional) path to model file, i.e. yolov8n.pt, yolov8n.yaml
|
9 |
+
data: # (str, optional) path to data file, i.e. coco128.yaml
|
10 |
+
epochs: 100 # (int) number of epochs to train for
|
11 |
+
patience: 50 # (int) epochs to wait for no observable improvement for early stopping of training
|
12 |
+
batch: -1 # (int) number of images per batch (-1 for AutoBatch)
|
13 |
+
imgsz: 640 # (int | list) input images size as int for train and val modes, or list[w,h] for predict and export modes
|
14 |
+
save: True # (bool) save train checkpoints and predict results
|
15 |
+
save_period: -1 # (int) Save checkpoint every x epochs (disabled if < 1)
|
16 |
+
cache: False # (bool) True/ram, disk or False. Use cache for data loading
|
17 |
+
device: cpu # (int | str | list, optional) device to run on, i.e. cuda device=0 or device=0,1,2,3 or device=cpu
|
18 |
+
workers: 2 # (int) number of worker threads for data loading (per RANK if DDP)
|
19 |
+
project: # (str, optional) project name
|
20 |
+
name: # (str, optional) experiment name, results saved to 'project/name' directory
|
21 |
+
exist_ok: True # (bool) whether to overwrite existing experiment
|
22 |
+
pretrained: True # (bool | str) whether to use a pretrained model (bool) or a model to load weights from (str)
|
23 |
+
optimizer: auto # (str) optimizer to use, choices=[SGD, Adam, Adamax, AdamW, NAdam, RAdam, RMSProp, auto]
|
24 |
+
verbose: True # (bool) whether to print verbose output
|
25 |
+
seed: 0 # (int) random seed for reproducibility
|
26 |
+
deterministic: True # (bool) whether to enable deterministic mode
|
27 |
+
single_cls: False # (bool) train multi-class data as single-class
|
28 |
+
rect: False # (bool) rectangular training if mode='train' or rectangular validation if mode='val'
|
29 |
+
cos_lr: False # (bool) use cosine learning rate scheduler
|
30 |
+
close_mosaic: 10 # (int) disable mosaic augmentation for final epochs
|
31 |
+
resume: False # (bool) resume training from last checkpoint
|
32 |
+
amp: False # (bool) Automatic Mixed Precision (AMP) training, choices=[True, False], True runs AMP check
|
33 |
+
fraction: 1.0 # (float) dataset fraction to train on (default is 1.0, all images in train set)
|
34 |
+
profile: False # (bool) profile ONNX and TensorRT speeds during training for loggers
|
35 |
+
# Segmentation
|
36 |
+
overlap_mask: True # (bool) masks should overlap during training (segment train only)
|
37 |
+
mask_ratio: 4 # (int) mask downsample ratio (segment train only)
|
38 |
+
# Classification
|
39 |
+
dropout: 0.0 # (float) use dropout regularization (classify train only)
|
40 |
+
|
41 |
+
# Val/Test settings ----------------------------------------------------------------------------------------------------
|
42 |
+
val: True # (bool) validate/test during training
|
43 |
+
split: val # (str) dataset split to use for validation, i.e. 'val', 'test' or 'train'
|
44 |
+
save_json: True # (bool) save results to JSON file
|
45 |
+
save_hybrid: False # (bool) save hybrid version of labels (labels + additional predictions)
|
46 |
+
conf: # (float, optional) object confidence threshold for detection (default 0.25 predict, 0.001 val)
|
47 |
+
iou: 0.7 # (float) intersection over union (IoU) threshold for NMS
|
48 |
+
max_det: 300 # (int) maximum number of detections per image
|
49 |
+
half: False # (bool) use half precision (FP16)
|
50 |
+
dnn: False # (bool) use OpenCV DNN for ONNX inference
|
51 |
+
plots: True # (bool) save plots during train/val
|
52 |
+
|
53 |
+
# Prediction settings --------------------------------------------------------------------------------------------------
|
54 |
+
source: # (str, optional) source directory for images or videos
|
55 |
+
show: False # (bool) show results if possible
|
56 |
+
save_txt: False # (bool) save results as .txt file
|
57 |
+
save_conf: False # (bool) save results with confidence scores
|
58 |
+
save_crop: False # (bool) save cropped images with results
|
59 |
+
show_labels: True # (bool) show object labels in plots
|
60 |
+
show_conf: True # (bool) show object confidence scores in plots
|
61 |
+
vid_stride: 1 # (int) video frame-rate stride
|
62 |
+
line_width: # (int, optional) line width of the bounding boxes, auto if missing
|
63 |
+
visualize: False # (bool) visualize model features
|
64 |
+
augment: False # (bool) apply image augmentation to prediction sources
|
65 |
+
agnostic_nms: False # (bool) class-agnostic NMS
|
66 |
+
classes: # (int | list[int], optional) filter results by class, i.e. class=0, or class=[0,2,3]
|
67 |
+
retina_masks: False # (bool) use high-resolution segmentation masks
|
68 |
+
boxes: True # (bool) Show boxes in segmentation predictions
|
69 |
+
|
70 |
+
# Export settings ------------------------------------------------------------------------------------------------------
|
71 |
+
format: torchscript # (str) format to export to, choices at https://docs.ultralytics.com/modes/export/#export-formats
|
72 |
+
keras: False # (bool) use Kera=s
|
73 |
+
optimize: False # (bool) TorchScript: optimize for mobile
|
74 |
+
int8: False # (bool) CoreML/TF INT8 quantization
|
75 |
+
dynamic: False # (bool) ONNX/TF/TensorRT: dynamic axes
|
76 |
+
simplify: False # (bool) ONNX: simplify model
|
77 |
+
opset: # (int, optional) ONNX: opset version
|
78 |
+
workspace: 4 # (int) TensorRT: workspace size (GB)
|
79 |
+
nms: False # (bool) CoreML: add NMS
|
80 |
+
|
81 |
+
# Hyperparameters ------------------------------------------------------------------------------------------------------
|
82 |
+
lr0: 0.01 # (float) initial learning rate (i.e. SGD=1E-2, Adam=1E-3)
|
83 |
+
lrf: 0.01 # (float) final learning rate (lr0 * lrf)
|
84 |
+
momentum: 0.937 # (float) SGD momentum/Adam beta1
|
85 |
+
weight_decay: 0.0005 # (float) optimizer weight decay 5e-4
|
86 |
+
warmup_epochs: 3.0 # (float) warmup epochs (fractions ok)
|
87 |
+
warmup_momentum: 0.8 # (float) warmup initial momentum
|
88 |
+
warmup_bias_lr: 0.1 # (float) warmup initial bias lr
|
89 |
+
box: 7.5 # (float) box loss gain
|
90 |
+
cls: 0.5 # (float) cls loss gain (scale with pixels)
|
91 |
+
dfl: 1.5 # (float) dfl loss gain
|
92 |
+
pose: 12.0 # (float) pose loss gain
|
93 |
+
kobj: 1.0 # (float) keypoint obj loss gain
|
94 |
+
label_smoothing: 0.0 # (float) label smoothing (fraction)
|
95 |
+
nbs: 64 # (int) nominal batch size
|
96 |
+
hsv_h: 0.015 # (float) image HSV-Hue augmentation (fraction)
|
97 |
+
hsv_s: 0.7 # (float) image HSV-Saturation augmentation (fraction)
|
98 |
+
hsv_v: 0.4 # (float) image HSV-Value augmentation (fraction)
|
99 |
+
degrees: 0.0 # (float) image rotation (+/- deg)
|
100 |
+
translate: 0.1 # (float) image translation (+/- fraction)
|
101 |
+
scale: 0.5 # (float) image scale (+/- gain)
|
102 |
+
shear: 0.0 # (float) image shear (+/- deg)
|
103 |
+
perspective: 0.0 # (float) image perspective (+/- fraction), range 0-0.001
|
104 |
+
flipud: 0.0 # (float) image flip up-down (probability)
|
105 |
+
fliplr: 0.5 # (float) image flip left-right (probability)
|
106 |
+
mosaic: 1.0 # (float) image mosaic (probability)
|
107 |
+
mixup: 0.0 # (float) image mixup (probability)
|
108 |
+
copy_paste: 0.0 # (float) segment copy-paste (probability)
|
109 |
+
|
110 |
+
# Custom config.yaml ---------------------------------------------------------------------------------------------------
|
111 |
+
cfg: # (str, optional) for overriding defaults.yaml
|
112 |
+
save_dir: ./runs/train1 # 自己设置路径
|
113 |
+
# Tracker settings ------------------------------------------------------------------------------------------------------
|
114 |
+
tracker: botsort.yaml # (str) tracker type, choices=[botsort.yaml, bytetrack.yaml]
|