Spaces:
Sleeping
Sleeping
# Ultralytics YOLO 🚀, AGPL-3.0 license | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from ultralytics.utils.loss import FocalLoss, VarifocalLoss | |
from ultralytics.utils.metrics import bbox_iou | |
from .ops import HungarianMatcher | |
class DETRLoss(nn.Module): | |
def __init__(self, | |
nc=80, | |
loss_gain=None, | |
aux_loss=True, | |
use_fl=True, | |
use_vfl=False, | |
use_uni_match=False, | |
uni_match_ind=0): | |
""" | |
DETR loss function. | |
Args: | |
nc (int): The number of classes. | |
loss_gain (dict): The coefficient of loss. | |
aux_loss (bool): If 'aux_loss = True', loss at each decoder layer are to be used. | |
use_vfl (bool): Use VarifocalLoss or not. | |
use_uni_match (bool): Whether to use a fixed layer to assign labels for auxiliary branch. | |
uni_match_ind (int): The fixed indices of a layer. | |
""" | |
super().__init__() | |
if loss_gain is None: | |
loss_gain = {'class': 1, 'bbox': 5, 'giou': 2, 'no_object': 0.1, 'mask': 1, 'dice': 1} | |
self.nc = nc | |
self.matcher = HungarianMatcher(cost_gain={'class': 2, 'bbox': 5, 'giou': 2}) | |
self.loss_gain = loss_gain | |
self.aux_loss = aux_loss | |
self.fl = FocalLoss() if use_fl else None | |
self.vfl = VarifocalLoss() if use_vfl else None | |
self.use_uni_match = use_uni_match | |
self.uni_match_ind = uni_match_ind | |
self.device = None | |
def _get_loss_class(self, pred_scores, targets, gt_scores, num_gts, postfix=''): | |
# logits: [b, query, num_classes], gt_class: list[[n, 1]] | |
name_class = f'loss_class{postfix}' | |
bs, nq = pred_scores.shape[:2] | |
# one_hot = F.one_hot(targets, self.nc + 1)[..., :-1] # (bs, num_queries, num_classes) | |
one_hot = torch.zeros((bs, nq, self.nc + 1), dtype=torch.int64, device=targets.device) | |
one_hot.scatter_(2, targets.unsqueeze(-1), 1) | |
one_hot = one_hot[..., :-1] | |
gt_scores = gt_scores.view(bs, nq, 1) * one_hot | |
if self.fl: | |
if num_gts and self.vfl: | |
loss_cls = self.vfl(pred_scores, gt_scores, one_hot) | |
else: | |
loss_cls = self.fl(pred_scores, one_hot.float()) | |
loss_cls /= max(num_gts, 1) / nq | |
else: | |
loss_cls = nn.BCEWithLogitsLoss(reduction='none')(pred_scores, gt_scores).mean(1).sum() # YOLO CLS loss | |
return {name_class: loss_cls.squeeze() * self.loss_gain['class']} | |
def _get_loss_bbox(self, pred_bboxes, gt_bboxes, postfix=''): | |
# boxes: [b, query, 4], gt_bbox: list[[n, 4]] | |
name_bbox = f'loss_bbox{postfix}' | |
name_giou = f'loss_giou{postfix}' | |
loss = {} | |
if len(gt_bboxes) == 0: | |
loss[name_bbox] = torch.tensor(0., device=self.device) | |
loss[name_giou] = torch.tensor(0., device=self.device) | |
return loss | |
loss[name_bbox] = self.loss_gain['bbox'] * F.l1_loss(pred_bboxes, gt_bboxes, reduction='sum') / len(gt_bboxes) | |
loss[name_giou] = 1.0 - bbox_iou(pred_bboxes, gt_bboxes, xywh=True, GIoU=True) | |
loss[name_giou] = loss[name_giou].sum() / len(gt_bboxes) | |
loss[name_giou] = self.loss_gain['giou'] * loss[name_giou] | |
loss = {k: v.squeeze() for k, v in loss.items()} | |
return loss | |
def _get_loss_mask(self, masks, gt_mask, match_indices, postfix=''): | |
# masks: [b, query, h, w], gt_mask: list[[n, H, W]] | |
name_mask = f'loss_mask{postfix}' | |
name_dice = f'loss_dice{postfix}' | |
loss = {} | |
if sum(len(a) for a in gt_mask) == 0: | |
loss[name_mask] = torch.tensor(0., device=self.device) | |
loss[name_dice] = torch.tensor(0., device=self.device) | |
return loss | |
num_gts = len(gt_mask) | |
src_masks, target_masks = self._get_assigned_bboxes(masks, gt_mask, match_indices) | |
src_masks = F.interpolate(src_masks.unsqueeze(0), size=target_masks.shape[-2:], mode='bilinear')[0] | |
# TODO: torch does not have `sigmoid_focal_loss`, but it's not urgent since we don't use mask branch for now. | |
loss[name_mask] = self.loss_gain['mask'] * F.sigmoid_focal_loss(src_masks, target_masks, | |
torch.tensor([num_gts], dtype=torch.float32)) | |
loss[name_dice] = self.loss_gain['dice'] * self._dice_loss(src_masks, target_masks, num_gts) | |
return loss | |
def _dice_loss(self, inputs, targets, num_gts): | |
inputs = F.sigmoid(inputs) | |
inputs = inputs.flatten(1) | |
targets = targets.flatten(1) | |
numerator = 2 * (inputs * targets).sum(1) | |
denominator = inputs.sum(-1) + targets.sum(-1) | |
loss = 1 - (numerator + 1) / (denominator + 1) | |
return loss.sum() / num_gts | |
def _get_loss_aux(self, | |
pred_bboxes, | |
pred_scores, | |
gt_bboxes, | |
gt_cls, | |
gt_groups, | |
match_indices=None, | |
postfix='', | |
masks=None, | |
gt_mask=None): | |
"""Get auxiliary losses""" | |
# NOTE: loss class, bbox, giou, mask, dice | |
loss = torch.zeros(5 if masks is not None else 3, device=pred_bboxes.device) | |
if match_indices is None and self.use_uni_match: | |
match_indices = self.matcher(pred_bboxes[self.uni_match_ind], | |
pred_scores[self.uni_match_ind], | |
gt_bboxes, | |
gt_cls, | |
gt_groups, | |
masks=masks[self.uni_match_ind] if masks is not None else None, | |
gt_mask=gt_mask) | |
for i, (aux_bboxes, aux_scores) in enumerate(zip(pred_bboxes, pred_scores)): | |
aux_masks = masks[i] if masks is not None else None | |
loss_ = self._get_loss(aux_bboxes, | |
aux_scores, | |
gt_bboxes, | |
gt_cls, | |
gt_groups, | |
masks=aux_masks, | |
gt_mask=gt_mask, | |
postfix=postfix, | |
match_indices=match_indices) | |
loss[0] += loss_[f'loss_class{postfix}'] | |
loss[1] += loss_[f'loss_bbox{postfix}'] | |
loss[2] += loss_[f'loss_giou{postfix}'] | |
# if masks is not None and gt_mask is not None: | |
# loss_ = self._get_loss_mask(aux_masks, gt_mask, match_indices, postfix) | |
# loss[3] += loss_[f'loss_mask{postfix}'] | |
# loss[4] += loss_[f'loss_dice{postfix}'] | |
loss = { | |
f'loss_class_aux{postfix}': loss[0], | |
f'loss_bbox_aux{postfix}': loss[1], | |
f'loss_giou_aux{postfix}': loss[2]} | |
# if masks is not None and gt_mask is not None: | |
# loss[f'loss_mask_aux{postfix}'] = loss[3] | |
# loss[f'loss_dice_aux{postfix}'] = loss[4] | |
return loss | |
def _get_index(self, match_indices): | |
batch_idx = torch.cat([torch.full_like(src, i) for i, (src, _) in enumerate(match_indices)]) | |
src_idx = torch.cat([src for (src, _) in match_indices]) | |
dst_idx = torch.cat([dst for (_, dst) in match_indices]) | |
return (batch_idx, src_idx), dst_idx | |
def _get_assigned_bboxes(self, pred_bboxes, gt_bboxes, match_indices): | |
pred_assigned = torch.cat([ | |
t[I] if len(I) > 0 else torch.zeros(0, t.shape[-1], device=self.device) | |
for t, (I, _) in zip(pred_bboxes, match_indices)]) | |
gt_assigned = torch.cat([ | |
t[J] if len(J) > 0 else torch.zeros(0, t.shape[-1], device=self.device) | |
for t, (_, J) in zip(gt_bboxes, match_indices)]) | |
return pred_assigned, gt_assigned | |
def _get_loss(self, | |
pred_bboxes, | |
pred_scores, | |
gt_bboxes, | |
gt_cls, | |
gt_groups, | |
masks=None, | |
gt_mask=None, | |
postfix='', | |
match_indices=None): | |
"""Get losses""" | |
if match_indices is None: | |
match_indices = self.matcher(pred_bboxes, | |
pred_scores, | |
gt_bboxes, | |
gt_cls, | |
gt_groups, | |
masks=masks, | |
gt_mask=gt_mask) | |
idx, gt_idx = self._get_index(match_indices) | |
pred_bboxes, gt_bboxes = pred_bboxes[idx], gt_bboxes[gt_idx] | |
bs, nq = pred_scores.shape[:2] | |
targets = torch.full((bs, nq), self.nc, device=pred_scores.device, dtype=gt_cls.dtype) | |
targets[idx] = gt_cls[gt_idx] | |
gt_scores = torch.zeros([bs, nq], device=pred_scores.device) | |
if len(gt_bboxes): | |
gt_scores[idx] = bbox_iou(pred_bboxes.detach(), gt_bboxes, xywh=True).squeeze(-1) | |
loss = {} | |
loss.update(self._get_loss_class(pred_scores, targets, gt_scores, len(gt_bboxes), postfix)) | |
loss.update(self._get_loss_bbox(pred_bboxes, gt_bboxes, postfix)) | |
# if masks is not None and gt_mask is not None: | |
# loss.update(self._get_loss_mask(masks, gt_mask, match_indices, postfix)) | |
return loss | |
def forward(self, pred_bboxes, pred_scores, batch, postfix='', **kwargs): | |
""" | |
Args: | |
pred_bboxes (torch.Tensor): [l, b, query, 4] | |
pred_scores (torch.Tensor): [l, b, query, num_classes] | |
batch (dict): A dict includes: | |
gt_cls (torch.Tensor) with shape [num_gts, ], | |
gt_bboxes (torch.Tensor): [num_gts, 4], | |
gt_groups (List(int)): a list of batch size length includes the number of gts of each image. | |
postfix (str): postfix of loss name. | |
""" | |
self.device = pred_bboxes.device | |
match_indices = kwargs.get('match_indices', None) | |
gt_cls, gt_bboxes, gt_groups = batch['cls'], batch['bboxes'], batch['gt_groups'] | |
total_loss = self._get_loss(pred_bboxes[-1], | |
pred_scores[-1], | |
gt_bboxes, | |
gt_cls, | |
gt_groups, | |
postfix=postfix, | |
match_indices=match_indices) | |
if self.aux_loss: | |
total_loss.update( | |
self._get_loss_aux(pred_bboxes[:-1], pred_scores[:-1], gt_bboxes, gt_cls, gt_groups, match_indices, | |
postfix)) | |
return total_loss | |
class RTDETRDetectionLoss(DETRLoss): | |
def forward(self, preds, batch, dn_bboxes=None, dn_scores=None, dn_meta=None): | |
pred_bboxes, pred_scores = preds | |
total_loss = super().forward(pred_bboxes, pred_scores, batch) | |
if dn_meta is not None: | |
dn_pos_idx, dn_num_group = dn_meta['dn_pos_idx'], dn_meta['dn_num_group'] | |
assert len(batch['gt_groups']) == len(dn_pos_idx) | |
# denoising match indices | |
match_indices = self.get_dn_match_indices(dn_pos_idx, dn_num_group, batch['gt_groups']) | |
# compute denoising training loss | |
dn_loss = super().forward(dn_bboxes, dn_scores, batch, postfix='_dn', match_indices=match_indices) | |
total_loss.update(dn_loss) | |
else: | |
total_loss.update({f'{k}_dn': torch.tensor(0., device=self.device) for k in total_loss.keys()}) | |
return total_loss | |
def get_dn_match_indices(dn_pos_idx, dn_num_group, gt_groups): | |
"""Get the match indices for denoising. | |
Args: | |
dn_pos_idx (List[torch.Tensor]): A list includes positive indices of denoising. | |
dn_num_group (int): The number of groups of denoising. | |
gt_groups (List(int)): a list of batch size length includes the number of gts of each image. | |
Returns: | |
dn_match_indices (List(tuple)): Matched indices. | |
""" | |
dn_match_indices = [] | |
idx_groups = torch.as_tensor([0, *gt_groups[:-1]]).cumsum_(0) | |
for i, num_gt in enumerate(gt_groups): | |
if num_gt > 0: | |
gt_idx = torch.arange(end=num_gt, dtype=torch.long) + idx_groups[i] | |
gt_idx = gt_idx.repeat(dn_num_group) | |
assert len(dn_pos_idx[i]) == len(gt_idx), 'Expected the same length, ' | |
f'but got {len(dn_pos_idx[i])} and {len(gt_idx)} respectively.' | |
dn_match_indices.append((dn_pos_idx[i], gt_idx)) | |
else: | |
dn_match_indices.append((torch.zeros([0], dtype=torch.long), torch.zeros([0], dtype=torch.long))) | |
return dn_match_indices | |