add app
Browse files
app.py
CHANGED
@@ -1,57 +1,10 @@
|
|
1 |
-
|
2 |
-
# from streamlit_chat import message as st_message
|
3 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
import torch
|
5 |
|
6 |
MAX_HISTORY = 7
|
7 |
MODEL_PATH = 'llongpre/DialoGPT-small-miles'
|
8 |
|
9 |
-
def get_models():
|
10 |
-
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
|
11 |
-
model = AutoModelForCausalLM.from_pretrained(MODEL_PATH)
|
12 |
-
return tokenizer, model
|
13 |
-
|
14 |
-
# if "history" not in st.session_state:
|
15 |
-
# st.session_state.history = []
|
16 |
-
#
|
17 |
-
# if "history_ids" not in st.session_state:
|
18 |
-
# st.session_state.history_ids = []
|
19 |
-
#
|
20 |
-
# st.title("Chat with me")
|
21 |
-
|
22 |
-
# def generate_answer():
|
23 |
-
# tokenizer, model = get_models()
|
24 |
-
# user_message = st.session_state.input_text
|
25 |
-
# new_user_input_ids = tokenizer.encode(st.session_state.input_text + tokenizer.eos_token, return_tensors='pt')
|
26 |
-
# st.session_state.history_ids.append(new_user_input_ids)
|
27 |
-
# if len(st.session_state.history_ids) > MAX_HISTORY:
|
28 |
-
# st.session_state.history_ids = st.session_state.history_ids[-MAX_HISTORY:]
|
29 |
-
# bot_input_ids = torch.cat(st.session_state.history_ids, dim=-1)
|
30 |
-
# chat_history_ids = model.generate(
|
31 |
-
# bot_input_ids,
|
32 |
-
# pad_token_id=tokenizer.pad_token_id,
|
33 |
-
# max_length=1000,
|
34 |
-
# do_sample=True,
|
35 |
-
# # top_k=150, # sample from the top k words sorted descending by probability
|
36 |
-
# top_p=0.7, # choose smallest possible words whose cumulative probability exceeds p
|
37 |
-
# temperature = 0.95, # 0 greedy, inf is random
|
38 |
-
# no_repeat_ngram_size=3,
|
39 |
-
# )
|
40 |
-
# response = chat_history_ids[:, bot_input_ids.shape[-1]:]
|
41 |
-
# st.session_state.history_ids.append(response)
|
42 |
-
# output = tokenizer.decode(response[0], skip_special_tokens=True)
|
43 |
-
#
|
44 |
-
# st.session_state.history.append({"message": user_message, "is_user": True})
|
45 |
-
# st.session_state.history.append({"message": output, "is_user": False})
|
46 |
-
|
47 |
-
# st.text_input("Your text message", key="input_text", on_change=generate_answer, placeholder='')
|
48 |
-
|
49 |
-
# for chat in st.session_state.history:
|
50 |
-
# st_message(**chat) # unpacking
|
51 |
-
|
52 |
-
|
53 |
-
import gradio as gr
|
54 |
-
|
55 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
|
56 |
model = AutoModelForCausalLM.from_pretrained(MODEL_PATH)
|
57 |
|
@@ -80,8 +33,7 @@ def predict(input, history=[]):
|
|
80 |
|
81 |
def generate_answer(input, history=[]):
|
82 |
new_user_input_ids = tokenizer.encode(input + tokenizer.eos_token, return_tensors='pt')
|
83 |
-
|
84 |
-
history = history.append(new_user_input_ids)
|
85 |
if len(history) > MAX_HISTORY:
|
86 |
history = history[-MAX_HISTORY:]
|
87 |
bot_input_ids = torch.cat(history, dim=-1)
|
@@ -96,8 +48,8 @@ def generate_answer(input, history=[]):
|
|
96 |
no_repeat_ngram_size=3,
|
97 |
)
|
98 |
response = chat_history_ids[:, bot_input_ids.shape[-1]:]
|
99 |
-
history.append(response)
|
100 |
output = tokenizer.decode(response[0], skip_special_tokens=True)
|
|
|
101 |
|
102 |
return output, history
|
103 |
|
|
|
1 |
+
import gradio as gr
|
|
|
2 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
import torch
|
4 |
|
5 |
MAX_HISTORY = 7
|
6 |
MODEL_PATH = 'llongpre/DialoGPT-small-miles'
|
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
|
9 |
model = AutoModelForCausalLM.from_pretrained(MODEL_PATH)
|
10 |
|
|
|
33 |
|
34 |
def generate_answer(input, history=[]):
|
35 |
new_user_input_ids = tokenizer.encode(input + tokenizer.eos_token, return_tensors='pt')
|
36 |
+
history = history.append(input)
|
|
|
37 |
if len(history) > MAX_HISTORY:
|
38 |
history = history[-MAX_HISTORY:]
|
39 |
bot_input_ids = torch.cat(history, dim=-1)
|
|
|
48 |
no_repeat_ngram_size=3,
|
49 |
)
|
50 |
response = chat_history_ids[:, bot_input_ids.shape[-1]:]
|
|
|
51 |
output = tokenizer.decode(response[0], skip_special_tokens=True)
|
52 |
+
history.append(output)
|
53 |
|
54 |
return output, history
|
55 |
|