vlff李飞飞
update md
2319518
raw
history blame
1.19 kB
import torch
from models.base import HFModel
class Qwen(HFModel):
def __init__(self, model_path):
super().__init__(model_path)
def generate(self, input_text, stop_words=[]):
im_end = '<|im_end|>'
if im_end not in stop_words:
stop_words = stop_words + [im_end]
stop_words_ids = [self.tokenizer.encode(w) for w in stop_words]
input_ids = torch.tensor([self.tokenizer.encode(input_text)
]).to(self.model.device)
output = self.model.generate(input_ids, stop_words_ids=stop_words_ids)
output = output.tolist()[0]
output = self.tokenizer.decode(output, errors='ignore')
assert output.startswith(input_text)
output = output[len(input_text):].replace('<|endoftext|>',
'').replace(im_end, '')
return output
class QwenVL(HFModel):
def __init__(self, model_path):
super().__init__(model_path)
def generate(self, inputs: list):
query = self.tokenizer.from_list_format(inputs)
response, _ = self.model.chat(self.tokenizer, query=query, history=None)
return response