hysts HF staff commited on
Commit
f5348ec
β€’
1 Parent(s): 21ddc2a

Apply formatters to src/populate.py

Browse files
Files changed (1) hide show
  1. src/populate.py +15 -12
src/populate.py CHANGED
@@ -13,29 +13,32 @@ def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchm
13
  raw_data = get_raw_eval_results(results_path, requests_path)
14
  all_data_json = [v.to_dict() for v in raw_data]
15
 
16
-
17
-
18
  df = pd.DataFrame.from_records(all_data_json)
19
-
20
  score_cols = [
21
- 'ALT E to J BLEU', 'ALT J to E BLEU', 'WikiCorpus E to J BLEU', 'WikiCorpus J to E BLEU',
22
- 'XL-Sum JA BLEU', 'XL-Sum ROUGE1', 'XL-Sum ROUGE2', 'XL-Sum ROUGE-Lsum'
 
 
 
 
 
 
23
  ]
24
-
25
  existing_score_cols = [col for col in score_cols if col in df.columns]
26
-
27
  # γ‚Ήγ‚³γ‚’εˆ—γ‚’100γ§ε‰²γ‚Šγ€.4fε½’εΌγ§γƒ•γ‚©γƒΌγƒžγƒƒγƒˆ
28
- df[existing_score_cols] = (df[existing_score_cols] / 100).applymap(lambda x: f'{x:.4f}')
29
  df = df.sort_values(by=[AutoEvalColumn.AVG.name], ascending=False)
30
  df = df[cols].round(decimals=2)
31
-
32
  # filter out if any of the benchmarks have not been produced
33
  df = df[has_no_nan_values(df, benchmark_cols)]
34
 
35
- df['Model'] = df['Model'].apply(lambda x: f'[{x.split("/")[-1]}]({x})' if isinstance(x, str) else x)
36
-
37
- return df
38
 
 
39
 
40
 
41
  def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
 
13
  raw_data = get_raw_eval_results(results_path, requests_path)
14
  all_data_json = [v.to_dict() for v in raw_data]
15
 
 
 
16
  df = pd.DataFrame.from_records(all_data_json)
17
+
18
  score_cols = [
19
+ "ALT E to J BLEU",
20
+ "ALT J to E BLEU",
21
+ "WikiCorpus E to J BLEU",
22
+ "WikiCorpus J to E BLEU",
23
+ "XL-Sum JA BLEU",
24
+ "XL-Sum ROUGE1",
25
+ "XL-Sum ROUGE2",
26
+ "XL-Sum ROUGE-Lsum",
27
  ]
28
+
29
  existing_score_cols = [col for col in score_cols if col in df.columns]
30
+
31
  # γ‚Ήγ‚³γ‚’εˆ—γ‚’100γ§ε‰²γ‚Šγ€.4fε½’εΌγ§γƒ•γ‚©γƒΌγƒžγƒƒγƒˆ
32
+ df[existing_score_cols] = (df[existing_score_cols] / 100).applymap(lambda x: f"{x:.4f}")
33
  df = df.sort_values(by=[AutoEvalColumn.AVG.name], ascending=False)
34
  df = df[cols].round(decimals=2)
35
+
36
  # filter out if any of the benchmarks have not been produced
37
  df = df[has_no_nan_values(df, benchmark_cols)]
38
 
39
+ df["Model"] = df["Model"].apply(lambda x: f'[{x.split("/")[-1]}]({x})' if isinstance(x, str) else x)
 
 
40
 
41
+ return df
42
 
43
 
44
  def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]: