sh1gechan commited on
Commit
c847e24
·
verified ·
1 Parent(s): 9001cdd

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -57
app.py CHANGED
@@ -301,69 +301,16 @@ with demo:
301
  # )
302
 
303
  initial_columns = [c.name for c in fields(AutoEvalColumn) if c.never_hidden or c.displayed_by_default]
304
- # データの状態を確認するための print 文を追加
305
- print("Before select_columns:")
306
- print(leaderboard_df['Model'].head()) # select_columns 呼び出し前に 'Model' 列を確認
307
  leaderboard_df_filtered = select_columns(leaderboard_df, initial_columns)
308
- # select_columns 後に再度 'Model' 列を確認
309
- print("After select_columns:")
310
- print(leaderboard_df['Model'].head())
311
-
312
- # 重複カラムの確認と削除
313
- duplicate_columns = leaderboard_df_filtered.columns[leaderboard_df_filtered.columns.duplicated()]
314
- if len(duplicate_columns) > 0:
315
- print(f"Duplicate columns found: {duplicate_columns.tolist()}")
316
- # 重複カラムを削除(最初の出現を保持)
317
- leaderboard_df_filtered = leaderboard_df_filtered.loc[:, ~leaderboard_df_filtered.columns.duplicated()]
318
- print("Duplicate columns have been removed.")
319
- else:
320
- print("No duplicate columns found.")
321
-
322
- # データ型を定義
323
- datatype_dict = {}
324
- for col in leaderboard_df_filtered.columns:
325
- if col == AutoEvalColumn.model.name: # 'Model'
326
- datatype_dict[col] = "markdown"
327
- elif col in TYPES:
328
- datatype_dict[col] = TYPES[col]
329
- else:
330
- datatype_dict[col] = "str" # デフォルトのデータ型
331
-
332
- # 'Type_' が 'datatype_dict' に含まれているか確認
333
- if 'Type_' not in datatype_dict:
334
- print("Warning: 'Type_' column not found in TYPES. Setting its datatype to 'str'.")
335
- datatype_dict['Type_'] = "str"
336
-
337
- # デバッグ用出力
338
- print("Datatype dictionary after renaming 'T' to 'Type_':", datatype_dict)
339
- print("Preview of leaderboard_df_filtered after renaming:")
340
- print(leaderboard_df_filtered.head())
341
-
342
- # カラム名を確認してスペースや特殊文字がないか確認
343
- print([f"'{c}'" for c in leaderboard_df_filtered.columns])
344
-
345
- # 'Type_' カラムのデータ型とユニーク値を再確認
346
- print(f"'T' カラムのデータ型: {leaderboard_df_filtered['T'].dtype}")
347
- print(f"'T' カラムのユニーク値: {leaderboard_df_filtered['T'].unique()}")
348
-
349
- # 'T' カラムを文字列型に変換
350
- leaderboard_df_filtered['T'] = leaderboard_df_filtered['T'].astype(str)
351
 
352
  # データ型を定義
353
  datatype = {col: "str" for col in leaderboard_df_filtered.columns}
354
  datatype['Model'] = "markdown"
355
 
356
- # デバッグ用出力
357
- print("Datatype dictionary:", datatype)
358
- print("Preview of leaderboard_df_filtered:")
359
- print(leaderboard_df_filtered.head())
360
-
361
- # カラム名を確認してスペースや特殊文字がないか確認
362
- print([f"'{c}'" for c in leaderboard_df_filtered.columns])
363
-
364
- # 'T' カラムのデータ型とユニーク値を再確認
365
- print(f"'T' カラムのデータ型: {leaderboard_df_filtered['T'].dtype}")
366
- print(f"'T' カラムのユニーク値: {leaderboard_df_filtered['T'].unique()}")
367
 
368
  # Gradio Dataframe コンポーネントの初期化
369
  leaderboard_table = gr.components.Dataframe(
 
301
  # )
302
 
303
  initial_columns = [c.name for c in fields(AutoEvalColumn) if c.never_hidden or c.displayed_by_default]
 
 
 
304
  leaderboard_df_filtered = select_columns(leaderboard_df, initial_columns)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
305
 
306
  # データ型を定義
307
  datatype = {col: "str" for col in leaderboard_df_filtered.columns}
308
  datatype['Model'] = "markdown"
309
 
310
+ # 'T' カラムが存在する場合、その型を設定
311
+ if 'T' in leaderboard_df_filtered.columns:
312
+ datatype['T'] = "str"
313
+ leaderboard_df_filtered['T'] = leaderboard_df_filtered['T'].astype(str)
 
 
 
 
 
 
 
314
 
315
  # Gradio Dataframe コンポーネントの初期化
316
  leaderboard_table = gr.components.Dataframe(