Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Update app.py
Browse files
app.py
CHANGED
@@ -301,69 +301,16 @@ with demo:
|
|
301 |
# )
|
302 |
|
303 |
initial_columns = [c.name for c in fields(AutoEvalColumn) if c.never_hidden or c.displayed_by_default]
|
304 |
-
# データの状態を確認するための print 文を追加
|
305 |
-
print("Before select_columns:")
|
306 |
-
print(leaderboard_df['Model'].head()) # select_columns 呼び出し前に 'Model' 列を確認
|
307 |
leaderboard_df_filtered = select_columns(leaderboard_df, initial_columns)
|
308 |
-
# select_columns 後に再度 'Model' 列を確認
|
309 |
-
print("After select_columns:")
|
310 |
-
print(leaderboard_df['Model'].head())
|
311 |
-
|
312 |
-
# 重複カラムの確認と削除
|
313 |
-
duplicate_columns = leaderboard_df_filtered.columns[leaderboard_df_filtered.columns.duplicated()]
|
314 |
-
if len(duplicate_columns) > 0:
|
315 |
-
print(f"Duplicate columns found: {duplicate_columns.tolist()}")
|
316 |
-
# 重複カラムを削除(最初の出現を保持)
|
317 |
-
leaderboard_df_filtered = leaderboard_df_filtered.loc[:, ~leaderboard_df_filtered.columns.duplicated()]
|
318 |
-
print("Duplicate columns have been removed.")
|
319 |
-
else:
|
320 |
-
print("No duplicate columns found.")
|
321 |
-
|
322 |
-
# データ型を定義
|
323 |
-
datatype_dict = {}
|
324 |
-
for col in leaderboard_df_filtered.columns:
|
325 |
-
if col == AutoEvalColumn.model.name: # 'Model'
|
326 |
-
datatype_dict[col] = "markdown"
|
327 |
-
elif col in TYPES:
|
328 |
-
datatype_dict[col] = TYPES[col]
|
329 |
-
else:
|
330 |
-
datatype_dict[col] = "str" # デフォルトのデータ型
|
331 |
-
|
332 |
-
# 'Type_' が 'datatype_dict' に含まれているか確認
|
333 |
-
if 'Type_' not in datatype_dict:
|
334 |
-
print("Warning: 'Type_' column not found in TYPES. Setting its datatype to 'str'.")
|
335 |
-
datatype_dict['Type_'] = "str"
|
336 |
-
|
337 |
-
# デバッグ用出力
|
338 |
-
print("Datatype dictionary after renaming 'T' to 'Type_':", datatype_dict)
|
339 |
-
print("Preview of leaderboard_df_filtered after renaming:")
|
340 |
-
print(leaderboard_df_filtered.head())
|
341 |
-
|
342 |
-
# カラム名を確認してスペースや特殊文字がないか確認
|
343 |
-
print([f"'{c}'" for c in leaderboard_df_filtered.columns])
|
344 |
-
|
345 |
-
# 'Type_' カラムのデータ型とユニーク値を再確認
|
346 |
-
print(f"'T' カラムのデータ型: {leaderboard_df_filtered['T'].dtype}")
|
347 |
-
print(f"'T' カラムのユニーク値: {leaderboard_df_filtered['T'].unique()}")
|
348 |
-
|
349 |
-
# 'T' カラムを文字列型に変換
|
350 |
-
leaderboard_df_filtered['T'] = leaderboard_df_filtered['T'].astype(str)
|
351 |
|
352 |
# データ型を定義
|
353 |
datatype = {col: "str" for col in leaderboard_df_filtered.columns}
|
354 |
datatype['Model'] = "markdown"
|
355 |
|
356 |
-
#
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
# カラム名を確認してスペースや特殊文字がないか確認
|
362 |
-
print([f"'{c}'" for c in leaderboard_df_filtered.columns])
|
363 |
-
|
364 |
-
# 'T' カラムのデータ型とユニーク値を再確認
|
365 |
-
print(f"'T' カラムのデータ型: {leaderboard_df_filtered['T'].dtype}")
|
366 |
-
print(f"'T' カラムのユニーク値: {leaderboard_df_filtered['T'].unique()}")
|
367 |
|
368 |
# Gradio Dataframe コンポーネントの初期化
|
369 |
leaderboard_table = gr.components.Dataframe(
|
|
|
301 |
# )
|
302 |
|
303 |
initial_columns = [c.name for c in fields(AutoEvalColumn) if c.never_hidden or c.displayed_by_default]
|
|
|
|
|
|
|
304 |
leaderboard_df_filtered = select_columns(leaderboard_df, initial_columns)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
305 |
|
306 |
# データ型を定義
|
307 |
datatype = {col: "str" for col in leaderboard_df_filtered.columns}
|
308 |
datatype['Model'] = "markdown"
|
309 |
|
310 |
+
# 'T' カラムが存在する場合、その型を設定
|
311 |
+
if 'T' in leaderboard_df_filtered.columns:
|
312 |
+
datatype['T'] = "str"
|
313 |
+
leaderboard_df_filtered['T'] = leaderboard_df_filtered['T'].astype(str)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
314 |
|
315 |
# Gradio Dataframe コンポーネントの初期化
|
316 |
leaderboard_table = gr.components.Dataframe(
|