Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Update app.py
Browse files
app.py
CHANGED
@@ -143,37 +143,43 @@ def filter_queries(query: str, filtered_df: pd.DataFrame):
|
|
143 |
def filter_models(
|
144 |
df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, add_special_tokens_query: list, num_few_shots_query: list, show_deleted: bool, show_merges: bool, show_flagged: bool
|
145 |
) -> pd.DataFrame:
|
146 |
-
print(f"filter_models called with: type_query={type_query}, size_query={size_query}, precision_query={precision_query}, add_special_tokens_query={add_special_tokens_query}, num_few_shots_query={num_few_shots_query}")
|
147 |
print(f"Initial df shape: {df.shape}")
|
148 |
print(f"Initial df content:\n{df}")
|
149 |
|
150 |
filtered_df = df
|
151 |
-
|
152 |
-
#
|
153 |
-
|
|
|
154 |
print(f"After type filter: {filtered_df.shape}")
|
155 |
-
print(f"After type filter content:\n{filtered_df}")
|
156 |
|
157 |
-
# Precision
|
158 |
-
|
159 |
print(f"After precision filter: {filtered_df.shape}")
|
160 |
-
print(f"After precision filter content:\n{filtered_df}")
|
161 |
|
162 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
163 |
print(f"After add_special_tokens filter: {filtered_df.shape}")
|
164 |
-
print(f"After add_special_tokens filter content:\n{filtered_df}")
|
165 |
|
166 |
-
#
|
|
|
167 |
print(f"After num_few_shots filter: {filtered_df.shape}")
|
168 |
-
print(f"After num_few_shots filter content:\n{filtered_df}")
|
169 |
|
170 |
-
#
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
print(f"After size filter: {filtered_df.shape}")
|
175 |
-
print(f"After size filter content:\n{filtered_df}")
|
176 |
|
|
|
|
|
177 |
return filtered_df
|
178 |
|
179 |
leaderboard_df = filter_models(leaderboard_df, [t.to_str(" : ") for t in ModelType], list(NUMERIC_INTERVALS.keys()), [i.value.name for i in Precision], [i.value.name for i in AddSpecialTokens], [i.value.name for i in NumFewShots], False, False, False)
|
|
|
143 |
def filter_models(
|
144 |
df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, add_special_tokens_query: list, num_few_shots_query: list, show_deleted: bool, show_merges: bool, show_flagged: bool
|
145 |
) -> pd.DataFrame:
|
|
|
146 |
print(f"Initial df shape: {df.shape}")
|
147 |
print(f"Initial df content:\n{df}")
|
148 |
|
149 |
filtered_df = df
|
150 |
+
|
151 |
+
# Model Type フィルタリング
|
152 |
+
type_emoji = [t.split()[0] for t in type_query]
|
153 |
+
filtered_df = filtered_df[filtered_df['T'].isin(type_emoji)]
|
154 |
print(f"After type filter: {filtered_df.shape}")
|
|
|
155 |
|
156 |
+
# Precision フィルタリング
|
157 |
+
filtered_df = filtered_df[filtered_df['Precision'].isin(precision_query + ['Unknown', '?'])]
|
158 |
print(f"After precision filter: {filtered_df.shape}")
|
|
|
159 |
|
160 |
+
# Model Size フィルタリング
|
161 |
+
if 'Unknown' in size_query:
|
162 |
+
size_mask = filtered_df['#Params (B)'].isna() | (filtered_df['#Params (B)'] == 0)
|
163 |
+
else:
|
164 |
+
size_mask = filtered_df['#Params (B)'].apply(lambda x: any(x in NUMERIC_INTERVALS[s] for s in size_query if s != 'Unknown'))
|
165 |
+
filtered_df = filtered_df[size_mask]
|
166 |
+
print(f"After size filter: {filtered_df.shape}")
|
167 |
+
|
168 |
+
# Add Special Tokens フィルタリング
|
169 |
+
filtered_df = filtered_df[filtered_df['Add Special Tokens'].isin(add_special_tokens_query + ['Unknown', '?'])]
|
170 |
print(f"After add_special_tokens filter: {filtered_df.shape}")
|
|
|
171 |
|
172 |
+
# Num Few Shots フィルタリング
|
173 |
+
filtered_df = filtered_df[filtered_df['Few-shot'].astype(str).isin([str(x) for x in num_few_shots_query] + ['Unknown', '?'])]
|
174 |
print(f"After num_few_shots filter: {filtered_df.shape}")
|
|
|
175 |
|
176 |
+
# Show deleted models フィルタリング
|
177 |
+
if not show_deleted:
|
178 |
+
filtered_df = filtered_df[filtered_df['Available on the hub'] == True]
|
179 |
+
print(f"After show_deleted filter: {filtered_df.shape}")
|
|
|
|
|
180 |
|
181 |
+
print("Filtered dataframe head:")
|
182 |
+
print(filtered_df.head())
|
183 |
return filtered_df
|
184 |
|
185 |
leaderboard_df = filter_models(leaderboard_df, [t.to_str(" : ") for t in ModelType], list(NUMERIC_INTERVALS.keys()), [i.value.name for i in Precision], [i.value.name for i in AddSpecialTokens], [i.value.name for i in NumFewShots], False, False, False)
|