sh1gechan commited on
Commit
4e9bbf4
β€’
1 Parent(s): bceba1e

Update src/populate.py

Browse files
Files changed (1) hide show
  1. src/populate.py +9 -1
src/populate.py CHANGED
@@ -12,23 +12,31 @@ def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchm
12
  """Creates a dataframe from all the individual experiment results"""
13
  raw_data = get_raw_eval_results(results_path, requests_path)
14
  all_data_json = [v.to_dict() for v in raw_data]
 
 
 
15
 
16
 
17
  df = pd.DataFrame.from_records(all_data_json)
 
18
  score_cols = [
19
  'ALT E to J BLEU', 'ALT J to E BLEU', 'WikiCorpus E to J BLEU', 'WikiCorpus J to E BLEU',
20
  'XL-Sum JA BLEU', 'XL-Sum ROUGE1', 'XL-Sum ROUGE2', 'XL-Sum ROUGE-Lsum'
21
  ]
22
 
23
  existing_score_cols = [col for col in score_cols if col in df.columns]
 
24
 
25
  # γ‚Ήγ‚³γ‚’εˆ—γ‚’100γ§ε‰²γ‚Šγ€.4fε½’εΌγ§γƒ•γ‚©γƒΌγƒžγƒƒγƒˆ
26
  df[existing_score_cols] = (df[existing_score_cols] / 100).applymap(lambda x: f'{x:.4f}')
 
27
  df = df.sort_values(by=[AutoEvalColumn.AVG.name], ascending=False)
28
  df = df[cols].round(decimals=2)
29
-
 
30
  # filter out if any of the benchmarks have not been produced
31
  df = df[has_no_nan_values(df, benchmark_cols)]
 
32
  return df
33
 
34
 
 
12
  """Creates a dataframe from all the individual experiment results"""
13
  raw_data = get_raw_eval_results(results_path, requests_path)
14
  all_data_json = [v.to_dict() for v in raw_data]
15
+
16
+ print(f"All data JSON: {all_data_json}")
17
+
18
 
19
 
20
  df = pd.DataFrame.from_records(all_data_json)
21
+ print(f"Initial DataFrame: {df}")
22
  score_cols = [
23
  'ALT E to J BLEU', 'ALT J to E BLEU', 'WikiCorpus E to J BLEU', 'WikiCorpus J to E BLEU',
24
  'XL-Sum JA BLEU', 'XL-Sum ROUGE1', 'XL-Sum ROUGE2', 'XL-Sum ROUGE-Lsum'
25
  ]
26
 
27
  existing_score_cols = [col for col in score_cols if col in df.columns]
28
+ print(f"Existing score columns: {existing_score_cols}")
29
 
30
  # γ‚Ήγ‚³γ‚’εˆ—γ‚’100γ§ε‰²γ‚Šγ€.4fε½’εΌγ§γƒ•γ‚©γƒΌγƒžγƒƒγƒˆ
31
  df[existing_score_cols] = (df[existing_score_cols] / 100).applymap(lambda x: f'{x:.4f}')
32
+ print(f"DataFrame after score adjustment: {df}")
33
  df = df.sort_values(by=[AutoEvalColumn.AVG.name], ascending=False)
34
  df = df[cols].round(decimals=2)
35
+ print(f"Sorted DataFrame: {df}")
36
+
37
  # filter out if any of the benchmarks have not been produced
38
  df = df[has_no_nan_values(df, benchmark_cols)]
39
+ print(f"Final DataFrame after NaN filtering: {df}")
40
  return df
41
 
42