Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Update app.py
Browse files
app.py
CHANGED
@@ -63,6 +63,38 @@ leaderboard_df = original_df.copy()
|
|
63 |
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
|
64 |
|
65 |
# Searching and filtering
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
def update_table(
|
67 |
hidden_df: pd.DataFrame,
|
68 |
columns: list,
|
@@ -76,23 +108,9 @@ def update_table(
|
|
76 |
show_flagged: bool,
|
77 |
query: str,
|
78 |
):
|
79 |
-
print(f"Update table called with: type_query={type_query}, precision_query={precision_query}, size_query={size_query}")
|
80 |
-
print(f"hidden_df shape before filtering: {hidden_df.shape}")
|
81 |
-
|
82 |
filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, add_special_tokens_query, num_few_shots_query, show_deleted, show_merges, show_flagged)
|
83 |
-
print(f"filtered_df shape after filter_models: {filtered_df.shape}")
|
84 |
-
|
85 |
filtered_df = filter_queries(query, filtered_df)
|
86 |
-
print(f"filtered_df shape after filter_queries: {filtered_df.shape}")
|
87 |
-
|
88 |
-
print(f"Filter applied: query={query}, columns={columns}, type_query={type_query}, precision_query={precision_query}")
|
89 |
-
print("Filtered dataframe head:")
|
90 |
-
print(filtered_df.head())
|
91 |
-
|
92 |
df = select_columns(filtered_df, columns)
|
93 |
-
print(f"Final df shape: {df.shape}")
|
94 |
-
print("Final dataframe head:")
|
95 |
-
print(df.head())
|
96 |
return df
|
97 |
|
98 |
|
@@ -105,16 +123,25 @@ def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
|
|
105 |
return df[(df[AutoEvalColumn.dummy.name].str.contains(query, case=False))]
|
106 |
|
107 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
|
109 |
always_here_cols = [
|
110 |
AutoEvalColumn.model_type_symbol.name,
|
111 |
AutoEvalColumn.model.name,
|
112 |
]
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
]
|
117 |
-
return filtered_df
|
118 |
|
119 |
|
120 |
def filter_queries(query: str, filtered_df: pd.DataFrame):
|
@@ -264,10 +291,18 @@ with demo:
|
|
264 |
initial_columns = [c.name for c in fields(AutoEvalColumn) if c.never_hidden or c.displayed_by_default]
|
265 |
leaderboard_df_filtered = select_columns(leaderboard_df_filtered, initial_columns)
|
266 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
267 |
leaderboard_table = gr.components.Dataframe(
|
268 |
-
value=leaderboard_df_filtered,
|
269 |
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
270 |
-
datatype=TYPES,
|
271 |
elem_id="leaderboard-table",
|
272 |
interactive=False,
|
273 |
visible=True,
|
|
|
63 |
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
|
64 |
|
65 |
# Searching and filtering
|
66 |
+
# def update_table(
|
67 |
+
# hidden_df: pd.DataFrame,
|
68 |
+
# columns: list,
|
69 |
+
# type_query: list,
|
70 |
+
# precision_query: str,
|
71 |
+
# size_query: list,
|
72 |
+
# add_special_tokens_query: list,
|
73 |
+
# num_few_shots_query: list,
|
74 |
+
# show_deleted: bool,
|
75 |
+
# show_merges: bool,
|
76 |
+
# show_flagged: bool,
|
77 |
+
# query: str,
|
78 |
+
# ):
|
79 |
+
# print(f"Update table called with: type_query={type_query}, precision_query={precision_query}, size_query={size_query}")
|
80 |
+
# print(f"hidden_df shape before filtering: {hidden_df.shape}")
|
81 |
+
|
82 |
+
# filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, add_special_tokens_query, num_few_shots_query, show_deleted, show_merges, show_flagged)
|
83 |
+
# print(f"filtered_df shape after filter_models: {filtered_df.shape}")
|
84 |
+
|
85 |
+
# filtered_df = filter_queries(query, filtered_df)
|
86 |
+
# print(f"filtered_df shape after filter_queries: {filtered_df.shape}")
|
87 |
+
|
88 |
+
# print(f"Filter applied: query={query}, columns={columns}, type_query={type_query}, precision_query={precision_query}")
|
89 |
+
# print("Filtered dataframe head:")
|
90 |
+
# print(filtered_df.head())
|
91 |
+
|
92 |
+
# df = select_columns(filtered_df, columns)
|
93 |
+
# print(f"Final df shape: {df.shape}")
|
94 |
+
# print("Final dataframe head:")
|
95 |
+
# print(df.head())
|
96 |
+
# return df
|
97 |
+
|
98 |
def update_table(
|
99 |
hidden_df: pd.DataFrame,
|
100 |
columns: list,
|
|
|
108 |
show_flagged: bool,
|
109 |
query: str,
|
110 |
):
|
|
|
|
|
|
|
111 |
filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, add_special_tokens_query, num_few_shots_query, show_deleted, show_merges, show_flagged)
|
|
|
|
|
112 |
filtered_df = filter_queries(query, filtered_df)
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
df = select_columns(filtered_df, columns)
|
|
|
|
|
|
|
114 |
return df
|
115 |
|
116 |
|
|
|
123 |
return df[(df[AutoEvalColumn.dummy.name].str.contains(query, case=False))]
|
124 |
|
125 |
|
126 |
+
# def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
|
127 |
+
# always_here_cols = [
|
128 |
+
# AutoEvalColumn.model_type_symbol.name,
|
129 |
+
# AutoEvalColumn.model.name,
|
130 |
+
# ]
|
131 |
+
# # We use COLS to maintain sorting
|
132 |
+
# filtered_df = df[
|
133 |
+
# always_here_cols + [c for c in COLS if c in df.columns and c in columns]# + [AutoEvalColumn.dummy.name]
|
134 |
+
# ]
|
135 |
+
# return filtered_df
|
136 |
+
|
137 |
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
|
138 |
always_here_cols = [
|
139 |
AutoEvalColumn.model_type_symbol.name,
|
140 |
AutoEvalColumn.model.name,
|
141 |
]
|
142 |
+
|
143 |
+
selected_cols = always_here_cols + [c for c in columns if c in df.columns]
|
144 |
+
return df[selected_cols]
|
|
|
|
|
145 |
|
146 |
|
147 |
def filter_queries(query: str, filtered_df: pd.DataFrame):
|
|
|
291 |
initial_columns = [c.name for c in fields(AutoEvalColumn) if c.never_hidden or c.displayed_by_default]
|
292 |
leaderboard_df_filtered = select_columns(leaderboard_df_filtered, initial_columns)
|
293 |
|
294 |
+
# leaderboard_table = gr.components.Dataframe(
|
295 |
+
# value=leaderboard_df_filtered,
|
296 |
+
# headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
297 |
+
# datatype=TYPES,
|
298 |
+
# elem_id="leaderboard-table",
|
299 |
+
# interactive=False,
|
300 |
+
# visible=True,
|
301 |
+
# )
|
302 |
leaderboard_table = gr.components.Dataframe(
|
303 |
+
value=select_columns(leaderboard_df_filtered, shown_columns.value),
|
304 |
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
305 |
+
datatype={col: TYPES[COLS.index(col)] if col in COLS else "str" for col in shown_columns.value},
|
306 |
elem_id="leaderboard-table",
|
307 |
interactive=False,
|
308 |
visible=True,
|