sh1gechan's picture
multimodal, base merges
64b9b34
from dataclasses import dataclass, make_dataclass
from enum import Enum
import pandas as pd
from src.about import Tasks, TaskType
def fields(raw_class):
return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]
# These classes are for user facing column names,
# to avoid having to change them all around the code
# when a modif is needed
@dataclass
class ColumnContent:
name: str
type: str
displayed_by_default: bool
hidden: bool = False
never_hidden: bool = False
dummy: bool = False
task_type: TaskType = TaskType.NotTask
average: bool = False
## Leaderboard columns
auto_eval_column_dict = []
# Init
auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
# Scores
# auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "number", True)])
for task in Tasks:
auto_eval_column_dict.append(
[
task.name,
ColumnContent,
ColumnContent(
task.value.col_name,
"number",
displayed_by_default=(task.value.task_type == TaskType.AVG or task.value.average),
task_type=task.value.task_type,
average=task.value.average,
),
]
)
# Model information
auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)])
auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)])
auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)])
auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)])
auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)])
auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❤️", "number", False)])
auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Revision", "str", False, False)])
auto_eval_column_dict.append(["num_few_shots", ColumnContent, ColumnContent("Few-shot", "number", False)])
auto_eval_column_dict.append(["add_special_tokens", ColumnContent, ColumnContent("Add Special Tokens", "bool", False)])
auto_eval_column_dict.append(
["llm_jp_eval_version", ColumnContent, ColumnContent("llm-jp-eval version", "str", False)]
)
auto_eval_column_dict.append(["vllm_version", ColumnContent, ColumnContent("vllm version", "str", False)])
auto_eval_column_dict.append(["dummy", ColumnContent, ColumnContent("model_name_for_query", "str", False, dummy=True)])
auto_eval_column_dict.append(["row_id", ColumnContent, ColumnContent("ID", "number", False, dummy=True)])
# We use make dataclass to dynamically fill the scores from Tasks
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
## For the queue columns in the submission tab
@dataclass(frozen=True)
class EvalQueueColumn: # Queue column
model = ColumnContent("model", "markdown", True)
revision = ColumnContent("revision", "str", True)
model_type = ColumnContent("model_type", "str", True)
precision = ColumnContent("precision", "str", True)
add_special_tokens = ColumnContent("add_special_tokens", "str", True)
llm_jp_eval_version = ColumnContent("llm_jp_eval_version", "str", True)
vllm_version = ColumnContent("vllm_version", "str", True)
status = ColumnContent("status", "str", True)
# This class is used to store the model data in the queue
@dataclass(frozen=True)
class EvalQueuedModel:
model: str
revision: str
precision: str
add_special_tokens: str
llm_jp_eval_version: str
vllm_version: str
## All the model information that we might need
@dataclass
class ModelDetails:
name: str
display_name: str = ""
symbol: str = "" # emoji
class ModelType(Enum):
PT = ModelDetails(name="pretrained", symbol="🟢")
FT = ModelDetails(name="fine-tuned", symbol="🔶")
IFT = ModelDetails(name="instruction-tuned", symbol="⭕")
RL = ModelDetails(name="RL-tuned (Preference optimization)", symbol="🟦")
MM = ModelDetails(name="multimodal", symbol="🌸")
BM = ModelDetails(name="base merges and moerges", symbol="🤝")
def to_str(self, separator=" "):
return f"{self.value.symbol}{separator}{self.value.name}"
@staticmethod
def from_str(type):
if "fine-tuned" in type or "🔶" in type:
return ModelType.FT
if "pretrained" in type or "🟢" in type:
return ModelType.PT
if "RL-tuned" in type or "🟦" in type:
return ModelType.RL
if "instruction-tuned" in type or "⭕" in type:
return ModelType.IFT
if "multimodal" in type or "🌸" in type:
return ModelType.MM
if "base merges and moerges" in type or "🤝" in type:
return ModelType.BM
raise ValueError(f"Unsupported model type: {type}")
class WeightType(Enum):
Adapter = ModelDetails("Adapter")
Original = ModelDetails("Original")
Delta = ModelDetails("Delta")
class Precision(Enum):
float16 = ModelDetails("float16")
bfloat16 = ModelDetails("bfloat16")
float32 = ModelDetails("float32")
@staticmethod
def from_str(precision: str) -> "Precision":
if precision == "float16":
return Precision.float16
if precision == "bfloat16":
return Precision.bfloat16
if precision == "float32":
return Precision.float32
raise ValueError(
f"Unsupported precision type: {precision}. Please use 'auto' (recommended), 'float32', 'float16', or 'bfloat16'"
)
class AddSpecialTokens(Enum):
true = ModelDetails("True")
false = ModelDetails("False")
class NumFewShots(Enum):
shots_0 = 0
shots_4 = 4
class LLMJpEvalVersion(Enum):
current = ModelDetails("v1.4.1")
@staticmethod
def from_str(version: str) -> "LLMJpEvalVersion":
if version == "1.4.1":
return LLMJpEvalVersion.current
raise ValueError(f"Unsupported LLMJpEval version: {version}")
class VllmVersion(Enum):
current = ModelDetails("v0.6.3.post1")
@staticmethod
def from_str(version: str) -> "VllmVersion":
if version == "v0.6.3.post1":
return VllmVersion.current
raise ValueError(f"Unsupported VLLM version: {version}")
# Column selection
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
TYPES = [c.type for c in fields(AutoEvalColumn)]
EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]
BENCHMARK_COLS = [t.value.col_name for t in Tasks]
NUMERIC_INTERVALS = {
"0~3B": pd.Interval(0, 3, closed="right"),
"3~7B": pd.Interval(3, 7.3, closed="right"),
"7~13B": pd.Interval(7.3, 13, closed="right"),
"13~35B": pd.Interval(13, 35, closed="right"),
"35~60B": pd.Interval(35, 60, closed="right"),
"60B+": pd.Interval(60, 10000, closed="right"),
"?": pd.Interval(-1, 0, closed="right"),
}