Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
from dataclasses import dataclass, make_dataclass | |
from enum import Enum | |
import pandas as pd | |
from src.about import Tasks, TaskType | |
def fields(raw_class): | |
return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"] | |
# These classes are for user facing column names, | |
# to avoid having to change them all around the code | |
# when a modif is needed | |
class ColumnContent: | |
name: str | |
type: str | |
displayed_by_default: bool | |
hidden: bool = False | |
never_hidden: bool = False | |
dummy: bool = False | |
task_type: TaskType = TaskType.NotTask | |
average: bool = False | |
## Leaderboard columns | |
auto_eval_column_dict = [] | |
# Init | |
auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)]) | |
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)]) | |
# Scores | |
# auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "number", True)]) | |
for task in Tasks: | |
auto_eval_column_dict.append( | |
[ | |
task.name, | |
ColumnContent, | |
ColumnContent( | |
task.value.col_name, | |
"number", | |
displayed_by_default=(task.value.task_type == TaskType.AVG or task.value.average), | |
task_type=task.value.task_type, | |
average=task.value.average, | |
), | |
] | |
) | |
# Model information | |
auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)]) | |
auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)]) | |
auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)]) | |
auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)]) | |
auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)]) | |
auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)]) | |
auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❤️", "number", False)]) | |
auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Revision", "str", False, False)]) | |
auto_eval_column_dict.append(["num_few_shots", ColumnContent, ColumnContent("Few-shot", "str", False)]) | |
auto_eval_column_dict.append(["add_special_tokens", ColumnContent, ColumnContent("Add Special Tokens", "bool", False)]) | |
auto_eval_column_dict.append( | |
["llm_jp_eval_version", ColumnContent, ColumnContent("llm-jp-eval version", "str", False)] | |
) | |
auto_eval_column_dict.append(["backend", ColumnContent, ColumnContent("Backend Library", "str", False, dummy=True)]) | |
auto_eval_column_dict.append(["dummy", ColumnContent, ColumnContent("model_name_for_query", "str", False, dummy=True)]) | |
# We use make dataclass to dynamically fill the scores from Tasks | |
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True) | |
## For the queue columns in the submission tab | |
class EvalQueueColumn: # Queue column | |
model = ColumnContent("model", "markdown", True) | |
revision = ColumnContent("revision", "str", True) | |
model_type = ColumnContent("model_type", "str", True) | |
precision = ColumnContent("precision", "str", True) | |
add_special_tokens = ColumnContent("add_special_tokens", "str", True) | |
status = ColumnContent("status", "str", True) | |
## All the model information that we might need | |
class ModelDetails: | |
name: str | |
display_name: str = "" | |
symbol: str = "" # emoji | |
class ModelType(Enum): | |
PT = ModelDetails(name="pretrained", symbol="🟢") | |
FT = ModelDetails(name="fine-tuned", symbol="🔶") | |
IFT = ModelDetails(name="instruction-tuned", symbol="⭕") | |
RL = ModelDetails(name="RL-tuned", symbol="🟦") | |
Unknown = ModelDetails(name="", symbol="?") | |
def to_str(self, separator=" "): | |
return f"{self.value.symbol}{separator}{self.value.name}" | |
def from_str(type): | |
if "fine-tuned" in type or "🔶" in type: | |
return ModelType.FT | |
if "pretrained" in type or "🟢" in type: | |
return ModelType.PT | |
if "RL-tuned" in type or "🟦" in type: | |
return ModelType.RL | |
if "instruction-tuned" in type or "⭕" in type: | |
return ModelType.IFT | |
return ModelType.Unknown | |
class WeightType(Enum): | |
Adapter = ModelDetails("Adapter") | |
Original = ModelDetails("Original") | |
Delta = ModelDetails("Delta") | |
class Precision(Enum): | |
float16 = ModelDetails("float16") | |
bfloat16 = ModelDetails("bfloat16") | |
Unknown = ModelDetails("?") | |
def from_str(precision): | |
if precision in ["torch.float16", "float16"]: | |
return Precision.float16 | |
if precision in ["torch.bfloat16", "bfloat16"]: | |
return Precision.bfloat16 | |
return Precision.Unknown | |
class AddSpecialTokens(Enum): | |
true = ModelDetails("True") | |
false = ModelDetails("False") | |
Unknown = ModelDetails("?") | |
class NumFewShots(Enum): | |
shots_0 = ModelDetails("0") | |
shots_4 = ModelDetails("4") | |
Unknown = ModelDetails("?") | |
def from_str(shots): | |
if shots == "0": | |
return NumFewShots.shots_0 | |
if shots == "4": | |
return NumFewShots.shots_4 | |
return NumFewShots.Unknown | |
class Version(Enum): | |
v1_4_1 = ModelDetails("v1.4.1") | |
Unknown = ModelDetails("?") | |
def from_str(version): | |
if version == "1.4.1": | |
return Version.v1_4_1 | |
else: | |
return Version.Unknown | |
class Backend(Enum): | |
vllm = ModelDetails("vllm") | |
Unknown = ModelDetails("?") | |
def from_str(backend): | |
if backend == "vllm": | |
return Backend.vllm | |
else: | |
return Backend.Unknown | |
# Column selection | |
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden] | |
TYPES = [c.type for c in fields(AutoEvalColumn)] | |
EVAL_COLS = [c.name for c in fields(EvalQueueColumn)] | |
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)] | |
BENCHMARK_COLS = [t.value.col_name for t in Tasks] | |
NUMERIC_INTERVALS = { | |
"0~3B": pd.Interval(0, 3, closed="right"), | |
"3~7B": pd.Interval(3, 7.3, closed="right"), | |
"7~13B": pd.Interval(7.3, 13, closed="right"), | |
"13~35B": pd.Interval(13, 35, closed="right"), | |
"35~60B": pd.Interval(35, 60, closed="right"), | |
"60B+": pd.Interval(60, 10000, closed="right"), | |
"?": pd.Interval(-1, 0, closed="right"), | |
} | |