sh1gechan's picture
Update src/leaderboard/read_evals.py
61a2e0b verified
raw
history blame
8.78 kB
import glob
import json
import math
import os
from dataclasses import dataclass
import dateutil
import numpy as np
from decimal import Decimal
from src.display.formatting import make_clickable_model
from src.display.utils import AutoEvalColumn, ModelType, Tasks, Precision, WeightType
from src.submission.check_validity import is_model_on_hub
@dataclass
class EvalResult:
"""Represents one full evaluation. Built from a combination of the result and request file for a given run.
"""
eval_name: str # org_model_precision (uid)
full_model: str # org/model (path on hub)
org: str
model: str
revision: str # commit hash, "" if main
results: dict
# precision: Precision = Precision.Unknown
model_type: ModelType = ModelType.Unknown # Pretrained, fine tuned, ...
precision: str = "Unknown"
# model_type: str = "Unknown"
weight_type: WeightType = WeightType.Original # Original or Adapter
architecture: str = "Unknown"
license: str = "?"
likes: int = 0
num_params: int = 0
date: str = "" # submission date of request file
still_on_hub: bool = False
num_few_shots: str = "0"
add_special_tokens: str = ""
@classmethod
def init_from_json_file(self, json_filepath):
"""Inits the result from the specific model result file"""
with open(json_filepath) as fp:
data = json.load(fp)
config = data.get("config")
metainfo = config.get("metainfo", {})
model_config = config.get("model", {})
# Get model type from metainfo
# model_type_str = metainfo.get("model_type", "")
# model_type = ModelType.from_str(model_type_str)
# model_type = metainfo.get("model_type", "Unknown")
# Get num_few_shots from metainfo
num_few_shots = str(metainfo.get("num_few_shots", 0))
# Precision
# precision = Precision.from_str(config.get("dtype"))
precision = model_config.get("dtype", "Unknown")
# Add Special Tokens
add_special_tokens = str(config.get("pipeline_kwargs").get("add_special_tokens"))
# Get model and org
org_and_model = config.get("model_name", config.get("model").get("model", None))
org_and_model = org_and_model.split("/", 1)
if len(org_and_model) == 1:
org = None
model = org_and_model[0]
# result_key = f"{model}_{precision.value.name}"
result_key = f"{model}_{precision}_({num_few_shots}shots)_{add_special_tokens}"
else:
org = org_and_model[0]
model = org_and_model[1]
# result_key = f"{org}_{model}_{precision.value.name}"
result_key = f"{model}_{precision}_({num_few_shots}shots)_{add_special_tokens}"
full_model = "/".join(org_and_model)
still_on_hub, _, model_config = is_model_on_hub(
full_model, config.get("model_sha", "main"), trust_remote_code=True, test_tokenizer=False
)
architecture = "?"
if model_config is not None:
architectures = getattr(model_config, "architectures", None)
if architectures:
architecture = ";".join(architectures)
if "scores" not in data:
raise KeyError(f"'scores' key not found in JSON file: {json_filepath}")
scores = data["scores"]
results = {}
for task in Tasks:
task_value = task.value
score = scores.get(task_value.metric)
results[task_value.metric] = score
return self(
eval_name=result_key,
full_model=full_model,
org=org,
model=model,
results=results,
precision=precision,
revision=config.get("model_sha", ""),
still_on_hub=still_on_hub,
architecture=architecture,
num_few_shots=num_few_shots,
add_special_tokens=add_special_tokens,
)
def update_with_request_file(self, requests_path):
"""Finds the relevant request file for the current model and updates info with it"""
request_file = get_request_file_for_model(requests_path, self.full_model, self.precision)
try:
with open(request_file, "r") as f:
request = json.load(f)
self.model_type = ModelType.from_str(request.get("model_type", ""))
self.weight_type = WeightType[request.get("weight_type", "Original")]
self.license = request.get("license", "?")
self.likes = request.get("likes", 0)
self.num_params = request.get("params", 0)
self.date = request.get("submitted_time", "")
except Exception:
print(f"Could not find request file for {self.org}/{self.model} with precision {self.precision}")
def to_dict(self):
"""Converts the Eval Result to a dict compatible with our dataframe display"""
# average = sum([v for v in self.results.values() if v is not None]) / len(Tasks)
data_dict = {
"eval_name": self.eval_name, # not a column, just a save name,
AutoEvalColumn.precision.name: self.precision,
AutoEvalColumn.model_type.name: self.model_type.value.name,
AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol,
AutoEvalColumn.weight_type.name: self.weight_type.value.name,
AutoEvalColumn.architecture.name: self.architecture,
AutoEvalColumn.model.name: make_clickable_model(self.full_model),
AutoEvalColumn.revision.name: self.revision,
# AutoEvalColumn.average.name: None,
AutoEvalColumn.license.name: self.license,
AutoEvalColumn.likes.name: self.likes,
AutoEvalColumn.params.name: self.num_params,
AutoEvalColumn.still_on_hub.name: self.still_on_hub,
AutoEvalColumn.num_few_shots.name: self.num_few_shots,
AutoEvalColumn.add_special_tokens.name: self.add_special_tokens,
}
# for task in Tasks:
# task_value = task.value
# data_dict[task_value.col_name] = self.results.get(task_value.benchmark, None)
for task in Tasks:
task_value = task.value
value = self.results.get(task_value.metric)
data_dict[task_value.col_name] = Decimal(value)
return data_dict
def get_request_file_for_model(requests_path, model_name, precision):
"""Selects the correct request file for a given model. Only keeps runs tagged as FINISHED"""
request_files = os.path.join(
requests_path,
f"{model_name}_eval_request_*.json",
)
request_files = glob.glob(request_files)
# Select correct request file (precision)
request_file = ""
request_files = sorted(request_files, reverse=True)
for tmp_request_file in request_files:
with open(tmp_request_file, "r") as f:
req_content = json.load(f)
if (
req_content["status"] in ["FINISHED"]
and req_content["precision"] == precision.split(".")[-1]
):
request_file = tmp_request_file
return request_file
def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResult]:
"""From the path of the results folder root, extract all needed info for results"""
model_result_filepaths = []
for root, _, files in os.walk(results_path):
# We should only have json files in model results
if len(files) == 0 or any([not f.endswith(".json") for f in files]):
continue
# Sort the files by date
try:
files.sort(key=lambda x: x.removesuffix(".json").removeprefix("results_")[:-7])
except dateutil.parser._parser.ParserError:
files = [files[-1]]
for file in files:
model_result_filepaths.append(os.path.join(root, file))
eval_results = {}
for model_result_filepath in model_result_filepaths:
# Creation of result
eval_result = EvalResult.init_from_json_file(model_result_filepath)
eval_result.update_with_request_file(requests_path)
# Store results of same eval together
eval_name = eval_result.eval_name
if eval_name in eval_results.keys():
eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None})
else:
eval_results[eval_name] = eval_result
results = []
for v in eval_results.values():
try:
v.to_dict() # we test if the dict version is complete
results.append(v)
except KeyError: # not all eval values present
continue
return results