justinxzhao's picture
Add icon, and reorganize data samples.
7ee6d4e
raw
history blame
9.18 kB
import streamlit as st
import pandas as pd
from PIL import Image
import base64
from io import BytesIO
# Define constants
MAJOR_A_WIN = "A>>B"
MINOR_A_WIN = "A>B"
MINOR_B_WIN = "B>A"
MAJOR_B_WIN = "B>>A"
TIE = "A=B"
def is_consistent(rating, reverse_rating):
if rating in {MAJOR_A_WIN, MINOR_A_WIN} and reverse_rating in {
MAJOR_B_WIN,
MINOR_B_WIN,
}:
return True
if rating in {MAJOR_B_WIN, MINOR_B_WIN} and reverse_rating in {
MAJOR_A_WIN,
MINOR_A_WIN,
}:
return True
if reverse_rating in {MAJOR_A_WIN, MINOR_A_WIN} and rating in {
MAJOR_B_WIN,
MINOR_B_WIN,
}:
return True
if reverse_rating in {MAJOR_B_WIN, MINOR_B_WIN} and rating in {
MAJOR_A_WIN,
MINOR_A_WIN,
}:
return True
if reverse_rating in {TIE} and rating in {TIE}:
return True
if reverse_rating in {TIE} and rating not in {TIE}:
return False
if rating in {TIE} and reverse_rating not in {TIE}:
return False
return False
# Function to convert PIL image to base64
def pil_to_base64(img):
buffered = BytesIO()
img.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode()
return img_str
# Load your dataframes
df_test_set = pd.read_json("data/test_set.jsonl", lines=True)
df_responses = pd.read_json("data/responses.jsonl", lines=True)
df_response_judging = pd.read_json("data/response_judging.jsonl", lines=True)
df_leaderboard = (
pd.read_csv("data/leaderboard_6_11.csv").sort_values("Rank").reset_index(drop=True)
)
df_leaderboard = df_leaderboard.rename(columns={"EI Score": "EI Score (95% CI)"})
# Prepare the scenario selector options
df_test_set["scenario_option"] = (
df_test_set["emobench_id"].astype(str) + ": " + df_test_set["scenario"]
)
scenario_options = df_test_set["scenario_option"].tolist()
# Prepare the model selector options
model_options = df_responses["llm_responder"].unique().tolist()
# Prepare the judge selector options
judge_options = df_response_judging["llm_judge"].unique().tolist()
st.set_page_config(page_title="Language Model Council", page_icon="🧊", layout="wide")
# Create three columns
col1, col2, col3 = st.columns(3)
# Define CSS to make buttons take full space
full_width_button_css = """
<style>
div.stButton > button {
width: 100%;
}
</style>
"""
st.markdown(full_width_button_css, unsafe_allow_html=True)
# Place a button in each column
with col1:
if st.button("Blog"):
st.write("Button 1 clicked")
with col2:
if st.button("Paper"):
st.write("Button 2 clicked")
with col3:
if st.button("Github"):
st.write("Button 3 clicked")
# Custom CSS to center title and header
center_css = """
<style>
h1, h2{
text-align: center;
}
</style>
"""
st.markdown(center_css, unsafe_allow_html=True)
# Load an image
image = Image.open("img/lmc_icon.png")
# Convert the image to base64
img_base64 = pil_to_base64(image)
# HTML to center the image and embed base64 image
centered_image_html = f"""
<div style="text-align: center;">
<img src="data:image/png;base64,{img_base64}" width="50"/>
</div>
"""
# Rendering the centered image
st.markdown(centered_image_html, unsafe_allow_html=True)
st.title("Language Model Council")
st.subheader("Benchmarking Foundation Models on Highly Subjective Tasks by Consensus")
# Create horizontal tabs
tabs = st.tabs(["Leaderboard Results", "Data Samples", "About Us"])
# Define content for each tab
with tabs[0]:
st.dataframe(df_leaderboard)
with tabs[1]:
st.markdown("### 1. Select a scenario.")
# Create the selectors
selected_scenario = st.selectbox(
"Select Scenario", scenario_options, label_visibility="hidden"
)
# Get the selected scenario details
if selected_scenario:
selected_emobench_id = int(selected_scenario.split(": ")[0])
scenario_details = df_test_set[
df_test_set["emobench_id"] == selected_emobench_id
].iloc[0]
# Display the detailed dilemma and additional information
st.write(scenario_details["detailed_dilemma"])
with st.expander("Additional Information"):
st.write(f"**LLM Author:** {scenario_details['llm_author']}")
st.write(f"**Problem:** {scenario_details['problem']}")
st.write(f"**Relationship:** {scenario_details['relationship']}")
st.write(f"**Scenario:** {scenario_details['scenario']}")
st.divider()
st.markdown("### 2. View responses.")
# Create two columns for model selectors
col1, col2 = st.columns(2)
with col1:
fixed_model = "qwen1.5-32B-Chat"
st.selectbox(
"Select Model", [fixed_model], key="fixed_model", label_visibility="hidden"
)
# Get the response string for the fixed model
if selected_scenario:
response_details_fixed = df_responses[
(df_responses["emobench_id"] == selected_emobench_id)
& (df_responses["llm_responder"] == fixed_model)
].iloc[0]
# Display the response string
st.write(response_details_fixed["response_string"])
with col2:
selected_model = st.selectbox(
"Select Model", model_options, key="dynamic_model"
)
# Get the response string for the selected model
if selected_model and selected_scenario:
response_details_dynamic = df_responses[
(df_responses["emobench_id"] == selected_emobench_id)
& (df_responses["llm_responder"] == selected_model)
].iloc[0]
# Display the response string
st.write(response_details_dynamic["response_string"])
st.divider()
# Add bar charts for value counts of pairwise choices over all judges
st.markdown("### 3. Response judging")
st.markdown("#### All council members")
col1, col2 = st.columns(2)
with col1:
st.write(f"**{fixed_model}** vs **{selected_model}**")
pairwise_counts_left = df_response_judging[
(df_response_judging["first_completion_by"] == fixed_model)
& (df_response_judging["second_completion_by"] == selected_model)
]["pairwise_choice"].value_counts()
st.bar_chart(pairwise_counts_left)
with col2:
st.write(f"**{selected_model}** vs **{fixed_model}**")
pairwise_counts_right = df_response_judging[
(df_response_judging["first_completion_by"] == selected_model)
& (df_response_judging["second_completion_by"] == fixed_model)
]["pairwise_choice"].value_counts()
st.bar_chart(pairwise_counts_right)
# Create the llm_judge selector
# st.write("**Select an individual judge for detailed inpsection.**")
st.markdown("#### Individudal LLM judges")
selected_judge = st.selectbox(
"Select Judge", judge_options, label_visibility="hidden"
)
# Get the judging details for the selected judge and models
if selected_judge and selected_scenario:
col1, col2 = st.columns(2)
judging_details_left = df_response_judging[
(df_response_judging["llm_judge"] == selected_judge)
& (df_response_judging["first_completion_by"] == fixed_model)
& (df_response_judging["second_completion_by"] == selected_model)
].iloc[0]
judging_details_right = df_response_judging[
(df_response_judging["llm_judge"] == selected_judge)
& (df_response_judging["first_completion_by"] == selected_model)
& (df_response_judging["second_completion_by"] == fixed_model)
].iloc[0]
if is_consistent(
judging_details_left["pairwise_choice"],
judging_details_right["pairwise_choice"],
):
st.success("The judge ratings are consistent.", icon="✅")
else:
st.warning("The judge ratings are inconsistent.", icon="⚠️")
# Display the judging details
with col1:
# st.write(f"**{fixed_model}** vs **{selected_model}**")
if not judging_details_left.empty:
st.write(
f"**Pairwise Choice:** {judging_details_left['pairwise_choice']}"
)
st.code(judging_details_left["judging_response_string"])
else:
st.write("No judging details found for the selected combination.")
with col2:
# st.write(f"**{selected_model}** vs **{fixed_model}**")
if not judging_details_right.empty:
st.write(
f"**Pairwise Choice:** {judging_details_right['pairwise_choice']}"
)
st.code(judging_details_right["judging_response_string"])
else:
st.write("No judging details found for the selected combination.")
with tabs[2]:
st.write("This is the about us page.")
# Add your about us content here
st.write(
"""
**Our Mission:**
To provide the best service and data insights.
**Our Team:**
- Alice
- Bob
- Charlie
"""
)