Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import numpy as np | |
| import openai | |
| from sentence_transformers import SentenceTransformer | |
| from langchain.prompts import PromptTemplate | |
| from collections import Counter | |
| def process(api, caption, category, asr, ocr): | |
| openai.api_key = api | |
| preference = "兴趣标签" | |
| example = "例如,给定一个视频,它的\"标题\"为\"长安系最便宜的轿车,4W起很多人都看不上它,但我知道车只是代步工具,又需要什么面子呢" \ | |
| "!\",\"类别\"为\"汽车\",\"ocr\"为\"长安系最便宜的一款轿车\",\"asr\"为\"我不否认现在的国产和合资还有一定的差距," \ | |
| "但确实是他们让我们5万开了MP V8万开上了轿车,10万开张了ICV15万开张了大七座。\",\"{}\"生成机器人推断出合理的\"{}\"为\"" \ | |
| "长安轿车报价、最便宜的长安轿车、新款长安轿车\"。".format(preference, preference) | |
| prompt = PromptTemplate( | |
| input_variables=["preference", "caption", "ocr", "asr", "category", "example"], | |
| template="你是一个视频的\"{preference}\"生成机器人,根据输入的视频标题、类别、ocr、asr推理出合理的\"{preference}\",以多个多" | |
| "于两字的标签形式进行表达,以顿号隔开。{example}那么,给定一个新的视频,它的\"标题\"为\"{caption}\",\"类别\"为" | |
| "\"{category}\",\"ocr\"为\"{ocr}\",\"asr\"为\"{asr}\",请推断出该视频的\"{preference}\":" | |
| ) | |
| text = prompt.format(preference=preference, caption=caption, category=category, ocr=ocr, asr=asr, example=example) | |
| try: | |
| completion = openai.ChatCompletion.create( | |
| model="gpt-3.5-turbo", | |
| messages=[{"role": "user", "content": text}], | |
| temperature=1.5, | |
| n=5 | |
| ) | |
| res = [] | |
| for j in range(5): | |
| ans = completion.choices[j].message["content"].strip() | |
| ans = ans.replace("\n", "") | |
| ans = ans.replace("。", "") | |
| ans = ans.replace(",", "、") | |
| res += ans.split('、') | |
| tag_count = Counter(res) | |
| tag_count = sorted(tag_count.items(), key=lambda x: x[1], reverse=True)[:10] | |
| tags_embed = np.load('./tag_data/tags_embed.npy') | |
| tags_dis = np.load('./tag_data/tags_dis.npy') | |
| candidate_tags = [_[0] for _ in tag_count] | |
| encoder = SentenceTransformer("hfl/chinese-roberta-wwm-ext-large") | |
| candidate_tags_embed = encoder.encode(candidate_tags) | |
| candidate_tags_dis = [np.sqrt(np.dot(_, _.T)) for _ in candidate_tags_embed] | |
| scores = np.dot(candidate_tags_embed, tags_embed.T) | |
| f = open('./tag_data/tags.txt', 'r') | |
| all_tags = [] | |
| for line in f.readlines(): | |
| all_tags.append(line.strip()) | |
| f.close() | |
| final_ans = [] | |
| for i in range(scores.shape[0]): | |
| for j in range(scores.shape[1]): | |
| score = scores[i][j] / (candidate_tags_dis[i] * tags_dis[j]) | |
| if score > 0.8: | |
| final_ans.append(all_tags[j]) | |
| print(final_ans) | |
| final_ans = Counter(final_ans) | |
| final_ans = sorted(final_ans.items(), key=lambda x: x[1], reverse=True)[:5] | |
| final_ans = [_[0] for _ in final_ans] | |
| return "、".join(final_ans) | |
| except: | |
| return 'api error' | |
| with gr.Blocks() as demo: | |
| text_api = gr.Textbox(label='OpenAI API key') | |
| text_caption = gr.Textbox(label='Caption') | |
| text_category = gr.Textbox(label='Category') | |
| text_asr = gr.Textbox(label='ASR') | |
| text_ocr = gr.Textbox(label='OCR') | |
| text_output = gr.Textbox(value='', label='Output') | |
| btn = gr.Button(value='Submit') | |
| btn.click(process, inputs=[text_api, text_caption, text_category, text_asr, text_ocr], outputs=[text_output]) | |
| if __name__ == "__main__": | |
| demo.launch(share=True) | |