Spaces:
Runtime error
Runtime error
data processing and training
Browse files- pt_br_classifier.ipynb +2092 -0
pt_br_classifier.ipynb
ADDED
@@ -0,0 +1,2092 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"nbformat": 4,
|
3 |
+
"nbformat_minor": 0,
|
4 |
+
"metadata": {
|
5 |
+
"colab": {
|
6 |
+
"provenance": []
|
7 |
+
},
|
8 |
+
"kernelspec": {
|
9 |
+
"name": "python3",
|
10 |
+
"display_name": "Python 3"
|
11 |
+
},
|
12 |
+
"language_info": {
|
13 |
+
"name": "python"
|
14 |
+
},
|
15 |
+
"accelerator": "GPU",
|
16 |
+
"gpuClass": "standard",
|
17 |
+
"widgets": {
|
18 |
+
"application/vnd.jupyter.widget-state+json": {
|
19 |
+
"79e7afed6f204ced8012f9853e8ce153": {
|
20 |
+
"model_module": "@jupyter-widgets/controls",
|
21 |
+
"model_name": "HBoxModel",
|
22 |
+
"model_module_version": "1.5.0",
|
23 |
+
"state": {
|
24 |
+
"_dom_classes": [],
|
25 |
+
"_model_module": "@jupyter-widgets/controls",
|
26 |
+
"_model_module_version": "1.5.0",
|
27 |
+
"_model_name": "HBoxModel",
|
28 |
+
"_view_count": null,
|
29 |
+
"_view_module": "@jupyter-widgets/controls",
|
30 |
+
"_view_module_version": "1.5.0",
|
31 |
+
"_view_name": "HBoxView",
|
32 |
+
"box_style": "",
|
33 |
+
"children": [
|
34 |
+
"IPY_MODEL_92e3b0a9ee344022b0bf16a6617239b3",
|
35 |
+
"IPY_MODEL_09fa538b6a05498282c2438a6c854fd1",
|
36 |
+
"IPY_MODEL_3b905f68919049608a3eb3c48da12032"
|
37 |
+
],
|
38 |
+
"layout": "IPY_MODEL_eee35ecb15c84ee994f9ffa479feeaaf"
|
39 |
+
}
|
40 |
+
},
|
41 |
+
"92e3b0a9ee344022b0bf16a6617239b3": {
|
42 |
+
"model_module": "@jupyter-widgets/controls",
|
43 |
+
"model_name": "HTMLModel",
|
44 |
+
"model_module_version": "1.5.0",
|
45 |
+
"state": {
|
46 |
+
"_dom_classes": [],
|
47 |
+
"_model_module": "@jupyter-widgets/controls",
|
48 |
+
"_model_module_version": "1.5.0",
|
49 |
+
"_model_name": "HTMLModel",
|
50 |
+
"_view_count": null,
|
51 |
+
"_view_module": "@jupyter-widgets/controls",
|
52 |
+
"_view_module_version": "1.5.0",
|
53 |
+
"_view_name": "HTMLView",
|
54 |
+
"description": "",
|
55 |
+
"description_tooltip": null,
|
56 |
+
"layout": "IPY_MODEL_c17b6f3b3436490e923835add11f8d74",
|
57 |
+
"placeholder": "",
|
58 |
+
"style": "IPY_MODEL_4d5a02eb385d470f8b3c68a8db60561c",
|
59 |
+
"value": "Map: 100%"
|
60 |
+
}
|
61 |
+
},
|
62 |
+
"09fa538b6a05498282c2438a6c854fd1": {
|
63 |
+
"model_module": "@jupyter-widgets/controls",
|
64 |
+
"model_name": "FloatProgressModel",
|
65 |
+
"model_module_version": "1.5.0",
|
66 |
+
"state": {
|
67 |
+
"_dom_classes": [],
|
68 |
+
"_model_module": "@jupyter-widgets/controls",
|
69 |
+
"_model_module_version": "1.5.0",
|
70 |
+
"_model_name": "FloatProgressModel",
|
71 |
+
"_view_count": null,
|
72 |
+
"_view_module": "@jupyter-widgets/controls",
|
73 |
+
"_view_module_version": "1.5.0",
|
74 |
+
"_view_name": "ProgressView",
|
75 |
+
"bar_style": "",
|
76 |
+
"description": "",
|
77 |
+
"description_tooltip": null,
|
78 |
+
"layout": "IPY_MODEL_7946964d5e8741ba86b2662397ccb891",
|
79 |
+
"max": 18000,
|
80 |
+
"min": 0,
|
81 |
+
"orientation": "horizontal",
|
82 |
+
"style": "IPY_MODEL_5624c10fc93943dda1e0c93c1fc2fbba",
|
83 |
+
"value": 18000
|
84 |
+
}
|
85 |
+
},
|
86 |
+
"3b905f68919049608a3eb3c48da12032": {
|
87 |
+
"model_module": "@jupyter-widgets/controls",
|
88 |
+
"model_name": "HTMLModel",
|
89 |
+
"model_module_version": "1.5.0",
|
90 |
+
"state": {
|
91 |
+
"_dom_classes": [],
|
92 |
+
"_model_module": "@jupyter-widgets/controls",
|
93 |
+
"_model_module_version": "1.5.0",
|
94 |
+
"_model_name": "HTMLModel",
|
95 |
+
"_view_count": null,
|
96 |
+
"_view_module": "@jupyter-widgets/controls",
|
97 |
+
"_view_module_version": "1.5.0",
|
98 |
+
"_view_name": "HTMLView",
|
99 |
+
"description": "",
|
100 |
+
"description_tooltip": null,
|
101 |
+
"layout": "IPY_MODEL_101f117dfb0a441e807757524b857350",
|
102 |
+
"placeholder": "",
|
103 |
+
"style": "IPY_MODEL_77819fe20f514982b8547abff9361b2d",
|
104 |
+
"value": " 18000/18000 [00:03<00:00, 5372.46 examples/s]"
|
105 |
+
}
|
106 |
+
},
|
107 |
+
"eee35ecb15c84ee994f9ffa479feeaaf": {
|
108 |
+
"model_module": "@jupyter-widgets/base",
|
109 |
+
"model_name": "LayoutModel",
|
110 |
+
"model_module_version": "1.2.0",
|
111 |
+
"state": {
|
112 |
+
"_model_module": "@jupyter-widgets/base",
|
113 |
+
"_model_module_version": "1.2.0",
|
114 |
+
"_model_name": "LayoutModel",
|
115 |
+
"_view_count": null,
|
116 |
+
"_view_module": "@jupyter-widgets/base",
|
117 |
+
"_view_module_version": "1.2.0",
|
118 |
+
"_view_name": "LayoutView",
|
119 |
+
"align_content": null,
|
120 |
+
"align_items": null,
|
121 |
+
"align_self": null,
|
122 |
+
"border": null,
|
123 |
+
"bottom": null,
|
124 |
+
"display": null,
|
125 |
+
"flex": null,
|
126 |
+
"flex_flow": null,
|
127 |
+
"grid_area": null,
|
128 |
+
"grid_auto_columns": null,
|
129 |
+
"grid_auto_flow": null,
|
130 |
+
"grid_auto_rows": null,
|
131 |
+
"grid_column": null,
|
132 |
+
"grid_gap": null,
|
133 |
+
"grid_row": null,
|
134 |
+
"grid_template_areas": null,
|
135 |
+
"grid_template_columns": null,
|
136 |
+
"grid_template_rows": null,
|
137 |
+
"height": null,
|
138 |
+
"justify_content": null,
|
139 |
+
"justify_items": null,
|
140 |
+
"left": null,
|
141 |
+
"margin": null,
|
142 |
+
"max_height": null,
|
143 |
+
"max_width": null,
|
144 |
+
"min_height": null,
|
145 |
+
"min_width": null,
|
146 |
+
"object_fit": null,
|
147 |
+
"object_position": null,
|
148 |
+
"order": null,
|
149 |
+
"overflow": null,
|
150 |
+
"overflow_x": null,
|
151 |
+
"overflow_y": null,
|
152 |
+
"padding": null,
|
153 |
+
"right": null,
|
154 |
+
"top": null,
|
155 |
+
"visibility": "hidden",
|
156 |
+
"width": null
|
157 |
+
}
|
158 |
+
},
|
159 |
+
"c17b6f3b3436490e923835add11f8d74": {
|
160 |
+
"model_module": "@jupyter-widgets/base",
|
161 |
+
"model_name": "LayoutModel",
|
162 |
+
"model_module_version": "1.2.0",
|
163 |
+
"state": {
|
164 |
+
"_model_module": "@jupyter-widgets/base",
|
165 |
+
"_model_module_version": "1.2.0",
|
166 |
+
"_model_name": "LayoutModel",
|
167 |
+
"_view_count": null,
|
168 |
+
"_view_module": "@jupyter-widgets/base",
|
169 |
+
"_view_module_version": "1.2.0",
|
170 |
+
"_view_name": "LayoutView",
|
171 |
+
"align_content": null,
|
172 |
+
"align_items": null,
|
173 |
+
"align_self": null,
|
174 |
+
"border": null,
|
175 |
+
"bottom": null,
|
176 |
+
"display": null,
|
177 |
+
"flex": null,
|
178 |
+
"flex_flow": null,
|
179 |
+
"grid_area": null,
|
180 |
+
"grid_auto_columns": null,
|
181 |
+
"grid_auto_flow": null,
|
182 |
+
"grid_auto_rows": null,
|
183 |
+
"grid_column": null,
|
184 |
+
"grid_gap": null,
|
185 |
+
"grid_row": null,
|
186 |
+
"grid_template_areas": null,
|
187 |
+
"grid_template_columns": null,
|
188 |
+
"grid_template_rows": null,
|
189 |
+
"height": null,
|
190 |
+
"justify_content": null,
|
191 |
+
"justify_items": null,
|
192 |
+
"left": null,
|
193 |
+
"margin": null,
|
194 |
+
"max_height": null,
|
195 |
+
"max_width": null,
|
196 |
+
"min_height": null,
|
197 |
+
"min_width": null,
|
198 |
+
"object_fit": null,
|
199 |
+
"object_position": null,
|
200 |
+
"order": null,
|
201 |
+
"overflow": null,
|
202 |
+
"overflow_x": null,
|
203 |
+
"overflow_y": null,
|
204 |
+
"padding": null,
|
205 |
+
"right": null,
|
206 |
+
"top": null,
|
207 |
+
"visibility": null,
|
208 |
+
"width": null
|
209 |
+
}
|
210 |
+
},
|
211 |
+
"4d5a02eb385d470f8b3c68a8db60561c": {
|
212 |
+
"model_module": "@jupyter-widgets/controls",
|
213 |
+
"model_name": "DescriptionStyleModel",
|
214 |
+
"model_module_version": "1.5.0",
|
215 |
+
"state": {
|
216 |
+
"_model_module": "@jupyter-widgets/controls",
|
217 |
+
"_model_module_version": "1.5.0",
|
218 |
+
"_model_name": "DescriptionStyleModel",
|
219 |
+
"_view_count": null,
|
220 |
+
"_view_module": "@jupyter-widgets/base",
|
221 |
+
"_view_module_version": "1.2.0",
|
222 |
+
"_view_name": "StyleView",
|
223 |
+
"description_width": ""
|
224 |
+
}
|
225 |
+
},
|
226 |
+
"7946964d5e8741ba86b2662397ccb891": {
|
227 |
+
"model_module": "@jupyter-widgets/base",
|
228 |
+
"model_name": "LayoutModel",
|
229 |
+
"model_module_version": "1.2.0",
|
230 |
+
"state": {
|
231 |
+
"_model_module": "@jupyter-widgets/base",
|
232 |
+
"_model_module_version": "1.2.0",
|
233 |
+
"_model_name": "LayoutModel",
|
234 |
+
"_view_count": null,
|
235 |
+
"_view_module": "@jupyter-widgets/base",
|
236 |
+
"_view_module_version": "1.2.0",
|
237 |
+
"_view_name": "LayoutView",
|
238 |
+
"align_content": null,
|
239 |
+
"align_items": null,
|
240 |
+
"align_self": null,
|
241 |
+
"border": null,
|
242 |
+
"bottom": null,
|
243 |
+
"display": null,
|
244 |
+
"flex": null,
|
245 |
+
"flex_flow": null,
|
246 |
+
"grid_area": null,
|
247 |
+
"grid_auto_columns": null,
|
248 |
+
"grid_auto_flow": null,
|
249 |
+
"grid_auto_rows": null,
|
250 |
+
"grid_column": null,
|
251 |
+
"grid_gap": null,
|
252 |
+
"grid_row": null,
|
253 |
+
"grid_template_areas": null,
|
254 |
+
"grid_template_columns": null,
|
255 |
+
"grid_template_rows": null,
|
256 |
+
"height": null,
|
257 |
+
"justify_content": null,
|
258 |
+
"justify_items": null,
|
259 |
+
"left": null,
|
260 |
+
"margin": null,
|
261 |
+
"max_height": null,
|
262 |
+
"max_width": null,
|
263 |
+
"min_height": null,
|
264 |
+
"min_width": null,
|
265 |
+
"object_fit": null,
|
266 |
+
"object_position": null,
|
267 |
+
"order": null,
|
268 |
+
"overflow": null,
|
269 |
+
"overflow_x": null,
|
270 |
+
"overflow_y": null,
|
271 |
+
"padding": null,
|
272 |
+
"right": null,
|
273 |
+
"top": null,
|
274 |
+
"visibility": null,
|
275 |
+
"width": null
|
276 |
+
}
|
277 |
+
},
|
278 |
+
"5624c10fc93943dda1e0c93c1fc2fbba": {
|
279 |
+
"model_module": "@jupyter-widgets/controls",
|
280 |
+
"model_name": "ProgressStyleModel",
|
281 |
+
"model_module_version": "1.5.0",
|
282 |
+
"state": {
|
283 |
+
"_model_module": "@jupyter-widgets/controls",
|
284 |
+
"_model_module_version": "1.5.0",
|
285 |
+
"_model_name": "ProgressStyleModel",
|
286 |
+
"_view_count": null,
|
287 |
+
"_view_module": "@jupyter-widgets/base",
|
288 |
+
"_view_module_version": "1.2.0",
|
289 |
+
"_view_name": "StyleView",
|
290 |
+
"bar_color": null,
|
291 |
+
"description_width": ""
|
292 |
+
}
|
293 |
+
},
|
294 |
+
"101f117dfb0a441e807757524b857350": {
|
295 |
+
"model_module": "@jupyter-widgets/base",
|
296 |
+
"model_name": "LayoutModel",
|
297 |
+
"model_module_version": "1.2.0",
|
298 |
+
"state": {
|
299 |
+
"_model_module": "@jupyter-widgets/base",
|
300 |
+
"_model_module_version": "1.2.0",
|
301 |
+
"_model_name": "LayoutModel",
|
302 |
+
"_view_count": null,
|
303 |
+
"_view_module": "@jupyter-widgets/base",
|
304 |
+
"_view_module_version": "1.2.0",
|
305 |
+
"_view_name": "LayoutView",
|
306 |
+
"align_content": null,
|
307 |
+
"align_items": null,
|
308 |
+
"align_self": null,
|
309 |
+
"border": null,
|
310 |
+
"bottom": null,
|
311 |
+
"display": null,
|
312 |
+
"flex": null,
|
313 |
+
"flex_flow": null,
|
314 |
+
"grid_area": null,
|
315 |
+
"grid_auto_columns": null,
|
316 |
+
"grid_auto_flow": null,
|
317 |
+
"grid_auto_rows": null,
|
318 |
+
"grid_column": null,
|
319 |
+
"grid_gap": null,
|
320 |
+
"grid_row": null,
|
321 |
+
"grid_template_areas": null,
|
322 |
+
"grid_template_columns": null,
|
323 |
+
"grid_template_rows": null,
|
324 |
+
"height": null,
|
325 |
+
"justify_content": null,
|
326 |
+
"justify_items": null,
|
327 |
+
"left": null,
|
328 |
+
"margin": null,
|
329 |
+
"max_height": null,
|
330 |
+
"max_width": null,
|
331 |
+
"min_height": null,
|
332 |
+
"min_width": null,
|
333 |
+
"object_fit": null,
|
334 |
+
"object_position": null,
|
335 |
+
"order": null,
|
336 |
+
"overflow": null,
|
337 |
+
"overflow_x": null,
|
338 |
+
"overflow_y": null,
|
339 |
+
"padding": null,
|
340 |
+
"right": null,
|
341 |
+
"top": null,
|
342 |
+
"visibility": null,
|
343 |
+
"width": null
|
344 |
+
}
|
345 |
+
},
|
346 |
+
"77819fe20f514982b8547abff9361b2d": {
|
347 |
+
"model_module": "@jupyter-widgets/controls",
|
348 |
+
"model_name": "DescriptionStyleModel",
|
349 |
+
"model_module_version": "1.5.0",
|
350 |
+
"state": {
|
351 |
+
"_model_module": "@jupyter-widgets/controls",
|
352 |
+
"_model_module_version": "1.5.0",
|
353 |
+
"_model_name": "DescriptionStyleModel",
|
354 |
+
"_view_count": null,
|
355 |
+
"_view_module": "@jupyter-widgets/base",
|
356 |
+
"_view_module_version": "1.2.0",
|
357 |
+
"_view_name": "StyleView",
|
358 |
+
"description_width": ""
|
359 |
+
}
|
360 |
+
},
|
361 |
+
"8f76ba596bdc427aa868685b151f51d8": {
|
362 |
+
"model_module": "@jupyter-widgets/controls",
|
363 |
+
"model_name": "HBoxModel",
|
364 |
+
"model_module_version": "1.5.0",
|
365 |
+
"state": {
|
366 |
+
"_dom_classes": [],
|
367 |
+
"_model_module": "@jupyter-widgets/controls",
|
368 |
+
"_model_module_version": "1.5.0",
|
369 |
+
"_model_name": "HBoxModel",
|
370 |
+
"_view_count": null,
|
371 |
+
"_view_module": "@jupyter-widgets/controls",
|
372 |
+
"_view_module_version": "1.5.0",
|
373 |
+
"_view_name": "HBoxView",
|
374 |
+
"box_style": "",
|
375 |
+
"children": [
|
376 |
+
"IPY_MODEL_a14ec2755a2a477aa654287af8a463a3",
|
377 |
+
"IPY_MODEL_cb82b162aae342888f353ea2fe507015",
|
378 |
+
"IPY_MODEL_ebb3365ce29e476ab28201e9b825e302"
|
379 |
+
],
|
380 |
+
"layout": "IPY_MODEL_31e7fabdde2f4129ab38d49b5c5b1d50"
|
381 |
+
}
|
382 |
+
},
|
383 |
+
"a14ec2755a2a477aa654287af8a463a3": {
|
384 |
+
"model_module": "@jupyter-widgets/controls",
|
385 |
+
"model_name": "HTMLModel",
|
386 |
+
"model_module_version": "1.5.0",
|
387 |
+
"state": {
|
388 |
+
"_dom_classes": [],
|
389 |
+
"_model_module": "@jupyter-widgets/controls",
|
390 |
+
"_model_module_version": "1.5.0",
|
391 |
+
"_model_name": "HTMLModel",
|
392 |
+
"_view_count": null,
|
393 |
+
"_view_module": "@jupyter-widgets/controls",
|
394 |
+
"_view_module_version": "1.5.0",
|
395 |
+
"_view_name": "HTMLView",
|
396 |
+
"description": "",
|
397 |
+
"description_tooltip": null,
|
398 |
+
"layout": "IPY_MODEL_b2fb5695afd04756975281c5a04fbcaf",
|
399 |
+
"placeholder": "",
|
400 |
+
"style": "IPY_MODEL_6e358ea9a32a486db0c81a5f54a112e9",
|
401 |
+
"value": "Map: 100%"
|
402 |
+
}
|
403 |
+
},
|
404 |
+
"cb82b162aae342888f353ea2fe507015": {
|
405 |
+
"model_module": "@jupyter-widgets/controls",
|
406 |
+
"model_name": "FloatProgressModel",
|
407 |
+
"model_module_version": "1.5.0",
|
408 |
+
"state": {
|
409 |
+
"_dom_classes": [],
|
410 |
+
"_model_module": "@jupyter-widgets/controls",
|
411 |
+
"_model_module_version": "1.5.0",
|
412 |
+
"_model_name": "FloatProgressModel",
|
413 |
+
"_view_count": null,
|
414 |
+
"_view_module": "@jupyter-widgets/controls",
|
415 |
+
"_view_module_version": "1.5.0",
|
416 |
+
"_view_name": "ProgressView",
|
417 |
+
"bar_style": "",
|
418 |
+
"description": "",
|
419 |
+
"description_tooltip": null,
|
420 |
+
"layout": "IPY_MODEL_647a42b85a8044229d71fd1e7318878b",
|
421 |
+
"max": 2000,
|
422 |
+
"min": 0,
|
423 |
+
"orientation": "horizontal",
|
424 |
+
"style": "IPY_MODEL_f439095945fb413e916059f01f67bc79",
|
425 |
+
"value": 2000
|
426 |
+
}
|
427 |
+
},
|
428 |
+
"ebb3365ce29e476ab28201e9b825e302": {
|
429 |
+
"model_module": "@jupyter-widgets/controls",
|
430 |
+
"model_name": "HTMLModel",
|
431 |
+
"model_module_version": "1.5.0",
|
432 |
+
"state": {
|
433 |
+
"_dom_classes": [],
|
434 |
+
"_model_module": "@jupyter-widgets/controls",
|
435 |
+
"_model_module_version": "1.5.0",
|
436 |
+
"_model_name": "HTMLModel",
|
437 |
+
"_view_count": null,
|
438 |
+
"_view_module": "@jupyter-widgets/controls",
|
439 |
+
"_view_module_version": "1.5.0",
|
440 |
+
"_view_name": "HTMLView",
|
441 |
+
"description": "",
|
442 |
+
"description_tooltip": null,
|
443 |
+
"layout": "IPY_MODEL_fece699d83854b5e876164da8a3b6f3a",
|
444 |
+
"placeholder": "",
|
445 |
+
"style": "IPY_MODEL_814444ea270d4739aa8588937801800b",
|
446 |
+
"value": " 2000/2000 [00:00<00:00, 5993.97 examples/s]"
|
447 |
+
}
|
448 |
+
},
|
449 |
+
"31e7fabdde2f4129ab38d49b5c5b1d50": {
|
450 |
+
"model_module": "@jupyter-widgets/base",
|
451 |
+
"model_name": "LayoutModel",
|
452 |
+
"model_module_version": "1.2.0",
|
453 |
+
"state": {
|
454 |
+
"_model_module": "@jupyter-widgets/base",
|
455 |
+
"_model_module_version": "1.2.0",
|
456 |
+
"_model_name": "LayoutModel",
|
457 |
+
"_view_count": null,
|
458 |
+
"_view_module": "@jupyter-widgets/base",
|
459 |
+
"_view_module_version": "1.2.0",
|
460 |
+
"_view_name": "LayoutView",
|
461 |
+
"align_content": null,
|
462 |
+
"align_items": null,
|
463 |
+
"align_self": null,
|
464 |
+
"border": null,
|
465 |
+
"bottom": null,
|
466 |
+
"display": null,
|
467 |
+
"flex": null,
|
468 |
+
"flex_flow": null,
|
469 |
+
"grid_area": null,
|
470 |
+
"grid_auto_columns": null,
|
471 |
+
"grid_auto_flow": null,
|
472 |
+
"grid_auto_rows": null,
|
473 |
+
"grid_column": null,
|
474 |
+
"grid_gap": null,
|
475 |
+
"grid_row": null,
|
476 |
+
"grid_template_areas": null,
|
477 |
+
"grid_template_columns": null,
|
478 |
+
"grid_template_rows": null,
|
479 |
+
"height": null,
|
480 |
+
"justify_content": null,
|
481 |
+
"justify_items": null,
|
482 |
+
"left": null,
|
483 |
+
"margin": null,
|
484 |
+
"max_height": null,
|
485 |
+
"max_width": null,
|
486 |
+
"min_height": null,
|
487 |
+
"min_width": null,
|
488 |
+
"object_fit": null,
|
489 |
+
"object_position": null,
|
490 |
+
"order": null,
|
491 |
+
"overflow": null,
|
492 |
+
"overflow_x": null,
|
493 |
+
"overflow_y": null,
|
494 |
+
"padding": null,
|
495 |
+
"right": null,
|
496 |
+
"top": null,
|
497 |
+
"visibility": "hidden",
|
498 |
+
"width": null
|
499 |
+
}
|
500 |
+
},
|
501 |
+
"b2fb5695afd04756975281c5a04fbcaf": {
|
502 |
+
"model_module": "@jupyter-widgets/base",
|
503 |
+
"model_name": "LayoutModel",
|
504 |
+
"model_module_version": "1.2.0",
|
505 |
+
"state": {
|
506 |
+
"_model_module": "@jupyter-widgets/base",
|
507 |
+
"_model_module_version": "1.2.0",
|
508 |
+
"_model_name": "LayoutModel",
|
509 |
+
"_view_count": null,
|
510 |
+
"_view_module": "@jupyter-widgets/base",
|
511 |
+
"_view_module_version": "1.2.0",
|
512 |
+
"_view_name": "LayoutView",
|
513 |
+
"align_content": null,
|
514 |
+
"align_items": null,
|
515 |
+
"align_self": null,
|
516 |
+
"border": null,
|
517 |
+
"bottom": null,
|
518 |
+
"display": null,
|
519 |
+
"flex": null,
|
520 |
+
"flex_flow": null,
|
521 |
+
"grid_area": null,
|
522 |
+
"grid_auto_columns": null,
|
523 |
+
"grid_auto_flow": null,
|
524 |
+
"grid_auto_rows": null,
|
525 |
+
"grid_column": null,
|
526 |
+
"grid_gap": null,
|
527 |
+
"grid_row": null,
|
528 |
+
"grid_template_areas": null,
|
529 |
+
"grid_template_columns": null,
|
530 |
+
"grid_template_rows": null,
|
531 |
+
"height": null,
|
532 |
+
"justify_content": null,
|
533 |
+
"justify_items": null,
|
534 |
+
"left": null,
|
535 |
+
"margin": null,
|
536 |
+
"max_height": null,
|
537 |
+
"max_width": null,
|
538 |
+
"min_height": null,
|
539 |
+
"min_width": null,
|
540 |
+
"object_fit": null,
|
541 |
+
"object_position": null,
|
542 |
+
"order": null,
|
543 |
+
"overflow": null,
|
544 |
+
"overflow_x": null,
|
545 |
+
"overflow_y": null,
|
546 |
+
"padding": null,
|
547 |
+
"right": null,
|
548 |
+
"top": null,
|
549 |
+
"visibility": null,
|
550 |
+
"width": null
|
551 |
+
}
|
552 |
+
},
|
553 |
+
"6e358ea9a32a486db0c81a5f54a112e9": {
|
554 |
+
"model_module": "@jupyter-widgets/controls",
|
555 |
+
"model_name": "DescriptionStyleModel",
|
556 |
+
"model_module_version": "1.5.0",
|
557 |
+
"state": {
|
558 |
+
"_model_module": "@jupyter-widgets/controls",
|
559 |
+
"_model_module_version": "1.5.0",
|
560 |
+
"_model_name": "DescriptionStyleModel",
|
561 |
+
"_view_count": null,
|
562 |
+
"_view_module": "@jupyter-widgets/base",
|
563 |
+
"_view_module_version": "1.2.0",
|
564 |
+
"_view_name": "StyleView",
|
565 |
+
"description_width": ""
|
566 |
+
}
|
567 |
+
},
|
568 |
+
"647a42b85a8044229d71fd1e7318878b": {
|
569 |
+
"model_module": "@jupyter-widgets/base",
|
570 |
+
"model_name": "LayoutModel",
|
571 |
+
"model_module_version": "1.2.0",
|
572 |
+
"state": {
|
573 |
+
"_model_module": "@jupyter-widgets/base",
|
574 |
+
"_model_module_version": "1.2.0",
|
575 |
+
"_model_name": "LayoutModel",
|
576 |
+
"_view_count": null,
|
577 |
+
"_view_module": "@jupyter-widgets/base",
|
578 |
+
"_view_module_version": "1.2.0",
|
579 |
+
"_view_name": "LayoutView",
|
580 |
+
"align_content": null,
|
581 |
+
"align_items": null,
|
582 |
+
"align_self": null,
|
583 |
+
"border": null,
|
584 |
+
"bottom": null,
|
585 |
+
"display": null,
|
586 |
+
"flex": null,
|
587 |
+
"flex_flow": null,
|
588 |
+
"grid_area": null,
|
589 |
+
"grid_auto_columns": null,
|
590 |
+
"grid_auto_flow": null,
|
591 |
+
"grid_auto_rows": null,
|
592 |
+
"grid_column": null,
|
593 |
+
"grid_gap": null,
|
594 |
+
"grid_row": null,
|
595 |
+
"grid_template_areas": null,
|
596 |
+
"grid_template_columns": null,
|
597 |
+
"grid_template_rows": null,
|
598 |
+
"height": null,
|
599 |
+
"justify_content": null,
|
600 |
+
"justify_items": null,
|
601 |
+
"left": null,
|
602 |
+
"margin": null,
|
603 |
+
"max_height": null,
|
604 |
+
"max_width": null,
|
605 |
+
"min_height": null,
|
606 |
+
"min_width": null,
|
607 |
+
"object_fit": null,
|
608 |
+
"object_position": null,
|
609 |
+
"order": null,
|
610 |
+
"overflow": null,
|
611 |
+
"overflow_x": null,
|
612 |
+
"overflow_y": null,
|
613 |
+
"padding": null,
|
614 |
+
"right": null,
|
615 |
+
"top": null,
|
616 |
+
"visibility": null,
|
617 |
+
"width": null
|
618 |
+
}
|
619 |
+
},
|
620 |
+
"f439095945fb413e916059f01f67bc79": {
|
621 |
+
"model_module": "@jupyter-widgets/controls",
|
622 |
+
"model_name": "ProgressStyleModel",
|
623 |
+
"model_module_version": "1.5.0",
|
624 |
+
"state": {
|
625 |
+
"_model_module": "@jupyter-widgets/controls",
|
626 |
+
"_model_module_version": "1.5.0",
|
627 |
+
"_model_name": "ProgressStyleModel",
|
628 |
+
"_view_count": null,
|
629 |
+
"_view_module": "@jupyter-widgets/base",
|
630 |
+
"_view_module_version": "1.2.0",
|
631 |
+
"_view_name": "StyleView",
|
632 |
+
"bar_color": null,
|
633 |
+
"description_width": ""
|
634 |
+
}
|
635 |
+
},
|
636 |
+
"fece699d83854b5e876164da8a3b6f3a": {
|
637 |
+
"model_module": "@jupyter-widgets/base",
|
638 |
+
"model_name": "LayoutModel",
|
639 |
+
"model_module_version": "1.2.0",
|
640 |
+
"state": {
|
641 |
+
"_model_module": "@jupyter-widgets/base",
|
642 |
+
"_model_module_version": "1.2.0",
|
643 |
+
"_model_name": "LayoutModel",
|
644 |
+
"_view_count": null,
|
645 |
+
"_view_module": "@jupyter-widgets/base",
|
646 |
+
"_view_module_version": "1.2.0",
|
647 |
+
"_view_name": "LayoutView",
|
648 |
+
"align_content": null,
|
649 |
+
"align_items": null,
|
650 |
+
"align_self": null,
|
651 |
+
"border": null,
|
652 |
+
"bottom": null,
|
653 |
+
"display": null,
|
654 |
+
"flex": null,
|
655 |
+
"flex_flow": null,
|
656 |
+
"grid_area": null,
|
657 |
+
"grid_auto_columns": null,
|
658 |
+
"grid_auto_flow": null,
|
659 |
+
"grid_auto_rows": null,
|
660 |
+
"grid_column": null,
|
661 |
+
"grid_gap": null,
|
662 |
+
"grid_row": null,
|
663 |
+
"grid_template_areas": null,
|
664 |
+
"grid_template_columns": null,
|
665 |
+
"grid_template_rows": null,
|
666 |
+
"height": null,
|
667 |
+
"justify_content": null,
|
668 |
+
"justify_items": null,
|
669 |
+
"left": null,
|
670 |
+
"margin": null,
|
671 |
+
"max_height": null,
|
672 |
+
"max_width": null,
|
673 |
+
"min_height": null,
|
674 |
+
"min_width": null,
|
675 |
+
"object_fit": null,
|
676 |
+
"object_position": null,
|
677 |
+
"order": null,
|
678 |
+
"overflow": null,
|
679 |
+
"overflow_x": null,
|
680 |
+
"overflow_y": null,
|
681 |
+
"padding": null,
|
682 |
+
"right": null,
|
683 |
+
"top": null,
|
684 |
+
"visibility": null,
|
685 |
+
"width": null
|
686 |
+
}
|
687 |
+
},
|
688 |
+
"814444ea270d4739aa8588937801800b": {
|
689 |
+
"model_module": "@jupyter-widgets/controls",
|
690 |
+
"model_name": "DescriptionStyleModel",
|
691 |
+
"model_module_version": "1.5.0",
|
692 |
+
"state": {
|
693 |
+
"_model_module": "@jupyter-widgets/controls",
|
694 |
+
"_model_module_version": "1.5.0",
|
695 |
+
"_model_name": "DescriptionStyleModel",
|
696 |
+
"_view_count": null,
|
697 |
+
"_view_module": "@jupyter-widgets/base",
|
698 |
+
"_view_module_version": "1.2.0",
|
699 |
+
"_view_name": "StyleView",
|
700 |
+
"description_width": ""
|
701 |
+
}
|
702 |
+
},
|
703 |
+
"00047affc56f494c82268e7a8bc2c53c": {
|
704 |
+
"model_module": "@jupyter-widgets/controls",
|
705 |
+
"model_name": "HBoxModel",
|
706 |
+
"model_module_version": "1.5.0",
|
707 |
+
"state": {
|
708 |
+
"_dom_classes": [],
|
709 |
+
"_model_module": "@jupyter-widgets/controls",
|
710 |
+
"_model_module_version": "1.5.0",
|
711 |
+
"_model_name": "HBoxModel",
|
712 |
+
"_view_count": null,
|
713 |
+
"_view_module": "@jupyter-widgets/controls",
|
714 |
+
"_view_module_version": "1.5.0",
|
715 |
+
"_view_name": "HBoxView",
|
716 |
+
"box_style": "",
|
717 |
+
"children": [
|
718 |
+
"IPY_MODEL_dd7a5a0c04fa4b66a0b5078b0a3e59e0",
|
719 |
+
"IPY_MODEL_eeaf71899a6743a081f79552dfc1672b",
|
720 |
+
"IPY_MODEL_23f2d28b36c84ea78422ef020d0d5e4b"
|
721 |
+
],
|
722 |
+
"layout": "IPY_MODEL_02a6351920ba4a0689b19bb9531dc8df"
|
723 |
+
}
|
724 |
+
},
|
725 |
+
"dd7a5a0c04fa4b66a0b5078b0a3e59e0": {
|
726 |
+
"model_module": "@jupyter-widgets/controls",
|
727 |
+
"model_name": "HTMLModel",
|
728 |
+
"model_module_version": "1.5.0",
|
729 |
+
"state": {
|
730 |
+
"_dom_classes": [],
|
731 |
+
"_model_module": "@jupyter-widgets/controls",
|
732 |
+
"_model_module_version": "1.5.0",
|
733 |
+
"_model_name": "HTMLModel",
|
734 |
+
"_view_count": null,
|
735 |
+
"_view_module": "@jupyter-widgets/controls",
|
736 |
+
"_view_module_version": "1.5.0",
|
737 |
+
"_view_name": "HTMLView",
|
738 |
+
"description": "",
|
739 |
+
"description_tooltip": null,
|
740 |
+
"layout": "IPY_MODEL_2859d235432e4d12a78f55412ba8c569",
|
741 |
+
"placeholder": "",
|
742 |
+
"style": "IPY_MODEL_7a8e9cb5072b47fa9a5cee174d29bc47",
|
743 |
+
"value": "Downloading pytorch_model.bin: 100%"
|
744 |
+
}
|
745 |
+
},
|
746 |
+
"eeaf71899a6743a081f79552dfc1672b": {
|
747 |
+
"model_module": "@jupyter-widgets/controls",
|
748 |
+
"model_name": "FloatProgressModel",
|
749 |
+
"model_module_version": "1.5.0",
|
750 |
+
"state": {
|
751 |
+
"_dom_classes": [],
|
752 |
+
"_model_module": "@jupyter-widgets/controls",
|
753 |
+
"_model_module_version": "1.5.0",
|
754 |
+
"_model_name": "FloatProgressModel",
|
755 |
+
"_view_count": null,
|
756 |
+
"_view_module": "@jupyter-widgets/controls",
|
757 |
+
"_view_module_version": "1.5.0",
|
758 |
+
"_view_name": "ProgressView",
|
759 |
+
"bar_style": "success",
|
760 |
+
"description": "",
|
761 |
+
"description_tooltip": null,
|
762 |
+
"layout": "IPY_MODEL_b6f515df241e44f7ba04114423fc1f7e",
|
763 |
+
"max": 265629392,
|
764 |
+
"min": 0,
|
765 |
+
"orientation": "horizontal",
|
766 |
+
"style": "IPY_MODEL_7fad565b40de40c2b3d8d72d8c50111e",
|
767 |
+
"value": 265629392
|
768 |
+
}
|
769 |
+
},
|
770 |
+
"23f2d28b36c84ea78422ef020d0d5e4b": {
|
771 |
+
"model_module": "@jupyter-widgets/controls",
|
772 |
+
"model_name": "HTMLModel",
|
773 |
+
"model_module_version": "1.5.0",
|
774 |
+
"state": {
|
775 |
+
"_dom_classes": [],
|
776 |
+
"_model_module": "@jupyter-widgets/controls",
|
777 |
+
"_model_module_version": "1.5.0",
|
778 |
+
"_model_name": "HTMLModel",
|
779 |
+
"_view_count": null,
|
780 |
+
"_view_module": "@jupyter-widgets/controls",
|
781 |
+
"_view_module_version": "1.5.0",
|
782 |
+
"_view_name": "HTMLView",
|
783 |
+
"description": "",
|
784 |
+
"description_tooltip": null,
|
785 |
+
"layout": "IPY_MODEL_0c271f3f91314bd094d8db4834c90e41",
|
786 |
+
"placeholder": "",
|
787 |
+
"style": "IPY_MODEL_243a2bc40dbd48d2910616fa0e1a01a6",
|
788 |
+
"value": " 266M/266M [00:15<00:00, 18.8MB/s]"
|
789 |
+
}
|
790 |
+
},
|
791 |
+
"02a6351920ba4a0689b19bb9531dc8df": {
|
792 |
+
"model_module": "@jupyter-widgets/base",
|
793 |
+
"model_name": "LayoutModel",
|
794 |
+
"model_module_version": "1.2.0",
|
795 |
+
"state": {
|
796 |
+
"_model_module": "@jupyter-widgets/base",
|
797 |
+
"_model_module_version": "1.2.0",
|
798 |
+
"_model_name": "LayoutModel",
|
799 |
+
"_view_count": null,
|
800 |
+
"_view_module": "@jupyter-widgets/base",
|
801 |
+
"_view_module_version": "1.2.0",
|
802 |
+
"_view_name": "LayoutView",
|
803 |
+
"align_content": null,
|
804 |
+
"align_items": null,
|
805 |
+
"align_self": null,
|
806 |
+
"border": null,
|
807 |
+
"bottom": null,
|
808 |
+
"display": null,
|
809 |
+
"flex": null,
|
810 |
+
"flex_flow": null,
|
811 |
+
"grid_area": null,
|
812 |
+
"grid_auto_columns": null,
|
813 |
+
"grid_auto_flow": null,
|
814 |
+
"grid_auto_rows": null,
|
815 |
+
"grid_column": null,
|
816 |
+
"grid_gap": null,
|
817 |
+
"grid_row": null,
|
818 |
+
"grid_template_areas": null,
|
819 |
+
"grid_template_columns": null,
|
820 |
+
"grid_template_rows": null,
|
821 |
+
"height": null,
|
822 |
+
"justify_content": null,
|
823 |
+
"justify_items": null,
|
824 |
+
"left": null,
|
825 |
+
"margin": null,
|
826 |
+
"max_height": null,
|
827 |
+
"max_width": null,
|
828 |
+
"min_height": null,
|
829 |
+
"min_width": null,
|
830 |
+
"object_fit": null,
|
831 |
+
"object_position": null,
|
832 |
+
"order": null,
|
833 |
+
"overflow": null,
|
834 |
+
"overflow_x": null,
|
835 |
+
"overflow_y": null,
|
836 |
+
"padding": null,
|
837 |
+
"right": null,
|
838 |
+
"top": null,
|
839 |
+
"visibility": null,
|
840 |
+
"width": null
|
841 |
+
}
|
842 |
+
},
|
843 |
+
"2859d235432e4d12a78f55412ba8c569": {
|
844 |
+
"model_module": "@jupyter-widgets/base",
|
845 |
+
"model_name": "LayoutModel",
|
846 |
+
"model_module_version": "1.2.0",
|
847 |
+
"state": {
|
848 |
+
"_model_module": "@jupyter-widgets/base",
|
849 |
+
"_model_module_version": "1.2.0",
|
850 |
+
"_model_name": "LayoutModel",
|
851 |
+
"_view_count": null,
|
852 |
+
"_view_module": "@jupyter-widgets/base",
|
853 |
+
"_view_module_version": "1.2.0",
|
854 |
+
"_view_name": "LayoutView",
|
855 |
+
"align_content": null,
|
856 |
+
"align_items": null,
|
857 |
+
"align_self": null,
|
858 |
+
"border": null,
|
859 |
+
"bottom": null,
|
860 |
+
"display": null,
|
861 |
+
"flex": null,
|
862 |
+
"flex_flow": null,
|
863 |
+
"grid_area": null,
|
864 |
+
"grid_auto_columns": null,
|
865 |
+
"grid_auto_flow": null,
|
866 |
+
"grid_auto_rows": null,
|
867 |
+
"grid_column": null,
|
868 |
+
"grid_gap": null,
|
869 |
+
"grid_row": null,
|
870 |
+
"grid_template_areas": null,
|
871 |
+
"grid_template_columns": null,
|
872 |
+
"grid_template_rows": null,
|
873 |
+
"height": null,
|
874 |
+
"justify_content": null,
|
875 |
+
"justify_items": null,
|
876 |
+
"left": null,
|
877 |
+
"margin": null,
|
878 |
+
"max_height": null,
|
879 |
+
"max_width": null,
|
880 |
+
"min_height": null,
|
881 |
+
"min_width": null,
|
882 |
+
"object_fit": null,
|
883 |
+
"object_position": null,
|
884 |
+
"order": null,
|
885 |
+
"overflow": null,
|
886 |
+
"overflow_x": null,
|
887 |
+
"overflow_y": null,
|
888 |
+
"padding": null,
|
889 |
+
"right": null,
|
890 |
+
"top": null,
|
891 |
+
"visibility": null,
|
892 |
+
"width": null
|
893 |
+
}
|
894 |
+
},
|
895 |
+
"7a8e9cb5072b47fa9a5cee174d29bc47": {
|
896 |
+
"model_module": "@jupyter-widgets/controls",
|
897 |
+
"model_name": "DescriptionStyleModel",
|
898 |
+
"model_module_version": "1.5.0",
|
899 |
+
"state": {
|
900 |
+
"_model_module": "@jupyter-widgets/controls",
|
901 |
+
"_model_module_version": "1.5.0",
|
902 |
+
"_model_name": "DescriptionStyleModel",
|
903 |
+
"_view_count": null,
|
904 |
+
"_view_module": "@jupyter-widgets/base",
|
905 |
+
"_view_module_version": "1.2.0",
|
906 |
+
"_view_name": "StyleView",
|
907 |
+
"description_width": ""
|
908 |
+
}
|
909 |
+
},
|
910 |
+
"b6f515df241e44f7ba04114423fc1f7e": {
|
911 |
+
"model_module": "@jupyter-widgets/base",
|
912 |
+
"model_name": "LayoutModel",
|
913 |
+
"model_module_version": "1.2.0",
|
914 |
+
"state": {
|
915 |
+
"_model_module": "@jupyter-widgets/base",
|
916 |
+
"_model_module_version": "1.2.0",
|
917 |
+
"_model_name": "LayoutModel",
|
918 |
+
"_view_count": null,
|
919 |
+
"_view_module": "@jupyter-widgets/base",
|
920 |
+
"_view_module_version": "1.2.0",
|
921 |
+
"_view_name": "LayoutView",
|
922 |
+
"align_content": null,
|
923 |
+
"align_items": null,
|
924 |
+
"align_self": null,
|
925 |
+
"border": null,
|
926 |
+
"bottom": null,
|
927 |
+
"display": null,
|
928 |
+
"flex": null,
|
929 |
+
"flex_flow": null,
|
930 |
+
"grid_area": null,
|
931 |
+
"grid_auto_columns": null,
|
932 |
+
"grid_auto_flow": null,
|
933 |
+
"grid_auto_rows": null,
|
934 |
+
"grid_column": null,
|
935 |
+
"grid_gap": null,
|
936 |
+
"grid_row": null,
|
937 |
+
"grid_template_areas": null,
|
938 |
+
"grid_template_columns": null,
|
939 |
+
"grid_template_rows": null,
|
940 |
+
"height": null,
|
941 |
+
"justify_content": null,
|
942 |
+
"justify_items": null,
|
943 |
+
"left": null,
|
944 |
+
"margin": null,
|
945 |
+
"max_height": null,
|
946 |
+
"max_width": null,
|
947 |
+
"min_height": null,
|
948 |
+
"min_width": null,
|
949 |
+
"object_fit": null,
|
950 |
+
"object_position": null,
|
951 |
+
"order": null,
|
952 |
+
"overflow": null,
|
953 |
+
"overflow_x": null,
|
954 |
+
"overflow_y": null,
|
955 |
+
"padding": null,
|
956 |
+
"right": null,
|
957 |
+
"top": null,
|
958 |
+
"visibility": null,
|
959 |
+
"width": null
|
960 |
+
}
|
961 |
+
},
|
962 |
+
"7fad565b40de40c2b3d8d72d8c50111e": {
|
963 |
+
"model_module": "@jupyter-widgets/controls",
|
964 |
+
"model_name": "ProgressStyleModel",
|
965 |
+
"model_module_version": "1.5.0",
|
966 |
+
"state": {
|
967 |
+
"_model_module": "@jupyter-widgets/controls",
|
968 |
+
"_model_module_version": "1.5.0",
|
969 |
+
"_model_name": "ProgressStyleModel",
|
970 |
+
"_view_count": null,
|
971 |
+
"_view_module": "@jupyter-widgets/base",
|
972 |
+
"_view_module_version": "1.2.0",
|
973 |
+
"_view_name": "StyleView",
|
974 |
+
"bar_color": null,
|
975 |
+
"description_width": ""
|
976 |
+
}
|
977 |
+
},
|
978 |
+
"0c271f3f91314bd094d8db4834c90e41": {
|
979 |
+
"model_module": "@jupyter-widgets/base",
|
980 |
+
"model_name": "LayoutModel",
|
981 |
+
"model_module_version": "1.2.0",
|
982 |
+
"state": {
|
983 |
+
"_model_module": "@jupyter-widgets/base",
|
984 |
+
"_model_module_version": "1.2.0",
|
985 |
+
"_model_name": "LayoutModel",
|
986 |
+
"_view_count": null,
|
987 |
+
"_view_module": "@jupyter-widgets/base",
|
988 |
+
"_view_module_version": "1.2.0",
|
989 |
+
"_view_name": "LayoutView",
|
990 |
+
"align_content": null,
|
991 |
+
"align_items": null,
|
992 |
+
"align_self": null,
|
993 |
+
"border": null,
|
994 |
+
"bottom": null,
|
995 |
+
"display": null,
|
996 |
+
"flex": null,
|
997 |
+
"flex_flow": null,
|
998 |
+
"grid_area": null,
|
999 |
+
"grid_auto_columns": null,
|
1000 |
+
"grid_auto_flow": null,
|
1001 |
+
"grid_auto_rows": null,
|
1002 |
+
"grid_column": null,
|
1003 |
+
"grid_gap": null,
|
1004 |
+
"grid_row": null,
|
1005 |
+
"grid_template_areas": null,
|
1006 |
+
"grid_template_columns": null,
|
1007 |
+
"grid_template_rows": null,
|
1008 |
+
"height": null,
|
1009 |
+
"justify_content": null,
|
1010 |
+
"justify_items": null,
|
1011 |
+
"left": null,
|
1012 |
+
"margin": null,
|
1013 |
+
"max_height": null,
|
1014 |
+
"max_width": null,
|
1015 |
+
"min_height": null,
|
1016 |
+
"min_width": null,
|
1017 |
+
"object_fit": null,
|
1018 |
+
"object_position": null,
|
1019 |
+
"order": null,
|
1020 |
+
"overflow": null,
|
1021 |
+
"overflow_x": null,
|
1022 |
+
"overflow_y": null,
|
1023 |
+
"padding": null,
|
1024 |
+
"right": null,
|
1025 |
+
"top": null,
|
1026 |
+
"visibility": null,
|
1027 |
+
"width": null
|
1028 |
+
}
|
1029 |
+
},
|
1030 |
+
"243a2bc40dbd48d2910616fa0e1a01a6": {
|
1031 |
+
"model_module": "@jupyter-widgets/controls",
|
1032 |
+
"model_name": "DescriptionStyleModel",
|
1033 |
+
"model_module_version": "1.5.0",
|
1034 |
+
"state": {
|
1035 |
+
"_model_module": "@jupyter-widgets/controls",
|
1036 |
+
"_model_module_version": "1.5.0",
|
1037 |
+
"_model_name": "DescriptionStyleModel",
|
1038 |
+
"_view_count": null,
|
1039 |
+
"_view_module": "@jupyter-widgets/base",
|
1040 |
+
"_view_module_version": "1.2.0",
|
1041 |
+
"_view_name": "StyleView",
|
1042 |
+
"description_width": ""
|
1043 |
+
}
|
1044 |
+
}
|
1045 |
+
}
|
1046 |
+
}
|
1047 |
+
},
|
1048 |
+
"cells": [
|
1049 |
+
{
|
1050 |
+
"cell_type": "markdown",
|
1051 |
+
"source": [
|
1052 |
+
"Задача - определить диалект португальского языка по фразе.\n",
|
1053 |
+
"\n",
|
1054 |
+
"Данные взяты из субтитров кофнеренции TED"
|
1055 |
+
],
|
1056 |
+
"metadata": {
|
1057 |
+
"id": "qF-Rki_SBT7-"
|
1058 |
+
}
|
1059 |
+
},
|
1060 |
+
{
|
1061 |
+
"cell_type": "markdown",
|
1062 |
+
"source": [
|
1063 |
+
"### Подготовка данных"
|
1064 |
+
],
|
1065 |
+
"metadata": {
|
1066 |
+
"id": "gjsF2U3a9_HR"
|
1067 |
+
}
|
1068 |
+
},
|
1069 |
+
{
|
1070 |
+
"cell_type": "code",
|
1071 |
+
"source": [
|
1072 |
+
"!wget https://object.pouta.csc.fi/OPUS-TED2020/v1/mono/pt.txt.gz\n",
|
1073 |
+
"!wget https://object.pouta.csc.fi/OPUS-TED2020/v1/mono/pt_br.txt.gz\n",
|
1074 |
+
"!gunzip pt.txt.gz\n",
|
1075 |
+
"!gunzip pt_br.txt.gz\n"
|
1076 |
+
],
|
1077 |
+
"metadata": {
|
1078 |
+
"colab": {
|
1079 |
+
"base_uri": "https://localhost:8080/"
|
1080 |
+
},
|
1081 |
+
"id": "XwRRwPFp9-JV",
|
1082 |
+
"outputId": "acfbaa31-8efd-45ed-cc42-8b124fac681e"
|
1083 |
+
},
|
1084 |
+
"execution_count": 2,
|
1085 |
+
"outputs": [
|
1086 |
+
{
|
1087 |
+
"output_type": "stream",
|
1088 |
+
"name": "stdout",
|
1089 |
+
"text": [
|
1090 |
+
"--2023-04-15 10:19:27-- https://object.pouta.csc.fi/OPUS-TED2020/v1/mono/pt.txt.gz\n",
|
1091 |
+
"Resolving object.pouta.csc.fi (object.pouta.csc.fi)... 86.50.254.19\n",
|
1092 |
+
"Connecting to object.pouta.csc.fi (object.pouta.csc.fi)|86.50.254.19|:443... connected.\n",
|
1093 |
+
"HTTP request sent, awaiting response... 200 OK\n",
|
1094 |
+
"Length: 11610902 (11M) [application/gzip]\n",
|
1095 |
+
"Saving to: ‘pt.txt.gz’\n",
|
1096 |
+
"\n",
|
1097 |
+
"pt.txt.gz 100%[===================>] 11.07M 4.32MB/s in 2.6s \n",
|
1098 |
+
"\n",
|
1099 |
+
"2023-04-15 10:19:31 (4.32 MB/s) - ‘pt.txt.gz’ saved [11610902/11610902]\n",
|
1100 |
+
"\n",
|
1101 |
+
"--2023-04-15 10:19:31-- https://object.pouta.csc.fi/OPUS-TED2020/v1/mono/pt_br.txt.gz\n",
|
1102 |
+
"Resolving object.pouta.csc.fi (object.pouta.csc.fi)... 86.50.254.19\n",
|
1103 |
+
"Connecting to object.pouta.csc.fi (object.pouta.csc.fi)|86.50.254.19|:443... connected.\n",
|
1104 |
+
"HTTP request sent, awaiting response... 200 OK\n",
|
1105 |
+
"Length: 14802314 (14M) [application/gzip]\n",
|
1106 |
+
"Saving to: ‘pt_br.txt.gz’\n",
|
1107 |
+
"\n",
|
1108 |
+
"pt_br.txt.gz 100%[===================>] 14.12M 4.94MB/s in 2.9s \n",
|
1109 |
+
"\n",
|
1110 |
+
"2023-04-15 10:19:35 (4.94 MB/s) - ‘pt_br.txt.gz’ saved [14802314/14802314]\n",
|
1111 |
+
"\n"
|
1112 |
+
]
|
1113 |
+
}
|
1114 |
+
]
|
1115 |
+
},
|
1116 |
+
{
|
1117 |
+
"cell_type": "code",
|
1118 |
+
"source": [
|
1119 |
+
"import pandas as pd\n",
|
1120 |
+
"\n",
|
1121 |
+
"pt = pd.read_csv('pt.txt', sep='\\t', names=['text'])\n",
|
1122 |
+
"pt['target'] = 'pt'\n",
|
1123 |
+
"pt_br = pd.read_csv('pt_br.txt', sep='\\t', names=['text'])\n",
|
1124 |
+
"pt_br['target'] = 'pt_br'\n",
|
1125 |
+
"data = pd.concat([pt[:10000], pt_br[:10000]], ignore_index=True)"
|
1126 |
+
],
|
1127 |
+
"metadata": {
|
1128 |
+
"id": "DIZD8gBB-6mo"
|
1129 |
+
},
|
1130 |
+
"execution_count": 35,
|
1131 |
+
"outputs": []
|
1132 |
+
},
|
1133 |
+
{
|
1134 |
+
"cell_type": "code",
|
1135 |
+
"source": [
|
1136 |
+
"data"
|
1137 |
+
],
|
1138 |
+
"metadata": {
|
1139 |
+
"colab": {
|
1140 |
+
"base_uri": "https://localhost:8080/",
|
1141 |
+
"height": 423
|
1142 |
+
},
|
1143 |
+
"id": "FQdiHJihD46w",
|
1144 |
+
"outputId": "5de3ab8d-032a-4ed9-dab5-8961ad3b19e3"
|
1145 |
+
},
|
1146 |
+
"execution_count": 4,
|
1147 |
+
"outputs": [
|
1148 |
+
{
|
1149 |
+
"output_type": "execute_result",
|
1150 |
+
"data": {
|
1151 |
+
"text/plain": [
|
1152 |
+
" text target\n",
|
1153 |
+
"0 Em meados do século XVI, os italianos eram cat... pt\n",
|
1154 |
+
"1 Porém, este dom tinha um alto preço. pt\n",
|
1155 |
+
"2 Para impedir a alteração da voz, esses cantore... pt\n",
|
1156 |
+
"3 Conhecidos por \"castrati\", estas vozes agudas ... pt\n",
|
1157 |
+
"4 Embora o crescimento vocal retardado possa pro... pt\n",
|
1158 |
+
"... ... ...\n",
|
1159 |
+
"49995 Como você acha que seria o mundo se você fosse... pt_br\n",
|
1160 |
+
"49996 Bem, a resposta é nada. pt_br\n",
|
1161 |
+
"49997 A razão por que você não consegue enxergar no ... pt_br\n",
|
1162 |
+
"49998 Para ver uma maçã, a luz tem que atingir a maç... pt_br\n",
|
1163 |
+
"49999 Então, as retinas em seus olhos recebem o refl... pt_br\n",
|
1164 |
+
"\n",
|
1165 |
+
"[50000 rows x 2 columns]"
|
1166 |
+
],
|
1167 |
+
"text/html": [
|
1168 |
+
"\n",
|
1169 |
+
" <div id=\"df-f5ef419f-52cd-4661-92e3-493f6c907f3e\">\n",
|
1170 |
+
" <div class=\"colab-df-container\">\n",
|
1171 |
+
" <div>\n",
|
1172 |
+
"<style scoped>\n",
|
1173 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
1174 |
+
" vertical-align: middle;\n",
|
1175 |
+
" }\n",
|
1176 |
+
"\n",
|
1177 |
+
" .dataframe tbody tr th {\n",
|
1178 |
+
" vertical-align: top;\n",
|
1179 |
+
" }\n",
|
1180 |
+
"\n",
|
1181 |
+
" .dataframe thead th {\n",
|
1182 |
+
" text-align: right;\n",
|
1183 |
+
" }\n",
|
1184 |
+
"</style>\n",
|
1185 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
1186 |
+
" <thead>\n",
|
1187 |
+
" <tr style=\"text-align: right;\">\n",
|
1188 |
+
" <th></th>\n",
|
1189 |
+
" <th>text</th>\n",
|
1190 |
+
" <th>target</th>\n",
|
1191 |
+
" </tr>\n",
|
1192 |
+
" </thead>\n",
|
1193 |
+
" <tbody>\n",
|
1194 |
+
" <tr>\n",
|
1195 |
+
" <th>0</th>\n",
|
1196 |
+
" <td>Em meados do século XVI, os italianos eram cat...</td>\n",
|
1197 |
+
" <td>pt</td>\n",
|
1198 |
+
" </tr>\n",
|
1199 |
+
" <tr>\n",
|
1200 |
+
" <th>1</th>\n",
|
1201 |
+
" <td>Porém, este dom tinha um alto preço.</td>\n",
|
1202 |
+
" <td>pt</td>\n",
|
1203 |
+
" </tr>\n",
|
1204 |
+
" <tr>\n",
|
1205 |
+
" <th>2</th>\n",
|
1206 |
+
" <td>Para impedir a alteração da voz, esses cantore...</td>\n",
|
1207 |
+
" <td>pt</td>\n",
|
1208 |
+
" </tr>\n",
|
1209 |
+
" <tr>\n",
|
1210 |
+
" <th>3</th>\n",
|
1211 |
+
" <td>Conhecidos por \"castrati\", estas vozes agudas ...</td>\n",
|
1212 |
+
" <td>pt</td>\n",
|
1213 |
+
" </tr>\n",
|
1214 |
+
" <tr>\n",
|
1215 |
+
" <th>4</th>\n",
|
1216 |
+
" <td>Embora o crescimento vocal retardado possa pro...</td>\n",
|
1217 |
+
" <td>pt</td>\n",
|
1218 |
+
" </tr>\n",
|
1219 |
+
" <tr>\n",
|
1220 |
+
" <th>...</th>\n",
|
1221 |
+
" <td>...</td>\n",
|
1222 |
+
" <td>...</td>\n",
|
1223 |
+
" </tr>\n",
|
1224 |
+
" <tr>\n",
|
1225 |
+
" <th>49995</th>\n",
|
1226 |
+
" <td>Como você acha que seria o mundo se você fosse...</td>\n",
|
1227 |
+
" <td>pt_br</td>\n",
|
1228 |
+
" </tr>\n",
|
1229 |
+
" <tr>\n",
|
1230 |
+
" <th>49996</th>\n",
|
1231 |
+
" <td>Bem, a resposta é nada.</td>\n",
|
1232 |
+
" <td>pt_br</td>\n",
|
1233 |
+
" </tr>\n",
|
1234 |
+
" <tr>\n",
|
1235 |
+
" <th>49997</th>\n",
|
1236 |
+
" <td>A razão por que você não consegue enxergar no ...</td>\n",
|
1237 |
+
" <td>pt_br</td>\n",
|
1238 |
+
" </tr>\n",
|
1239 |
+
" <tr>\n",
|
1240 |
+
" <th>49998</th>\n",
|
1241 |
+
" <td>Para ver uma maçã, a luz tem que atingir a maç...</td>\n",
|
1242 |
+
" <td>pt_br</td>\n",
|
1243 |
+
" </tr>\n",
|
1244 |
+
" <tr>\n",
|
1245 |
+
" <th>49999</th>\n",
|
1246 |
+
" <td>Então, as retinas em seus olhos recebem o refl...</td>\n",
|
1247 |
+
" <td>pt_br</td>\n",
|
1248 |
+
" </tr>\n",
|
1249 |
+
" </tbody>\n",
|
1250 |
+
"</table>\n",
|
1251 |
+
"<p>50000 rows × 2 columns</p>\n",
|
1252 |
+
"</div>\n",
|
1253 |
+
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-f5ef419f-52cd-4661-92e3-493f6c907f3e')\"\n",
|
1254 |
+
" title=\"Convert this dataframe to an interactive table.\"\n",
|
1255 |
+
" style=\"display:none;\">\n",
|
1256 |
+
" \n",
|
1257 |
+
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
|
1258 |
+
" width=\"24px\">\n",
|
1259 |
+
" <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n",
|
1260 |
+
" <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n",
|
1261 |
+
" </svg>\n",
|
1262 |
+
" </button>\n",
|
1263 |
+
" \n",
|
1264 |
+
" <style>\n",
|
1265 |
+
" .colab-df-container {\n",
|
1266 |
+
" display:flex;\n",
|
1267 |
+
" flex-wrap:wrap;\n",
|
1268 |
+
" gap: 12px;\n",
|
1269 |
+
" }\n",
|
1270 |
+
"\n",
|
1271 |
+
" .colab-df-convert {\n",
|
1272 |
+
" background-color: #E8F0FE;\n",
|
1273 |
+
" border: none;\n",
|
1274 |
+
" border-radius: 50%;\n",
|
1275 |
+
" cursor: pointer;\n",
|
1276 |
+
" display: none;\n",
|
1277 |
+
" fill: #1967D2;\n",
|
1278 |
+
" height: 32px;\n",
|
1279 |
+
" padding: 0 0 0 0;\n",
|
1280 |
+
" width: 32px;\n",
|
1281 |
+
" }\n",
|
1282 |
+
"\n",
|
1283 |
+
" .colab-df-convert:hover {\n",
|
1284 |
+
" background-color: #E2EBFA;\n",
|
1285 |
+
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
|
1286 |
+
" fill: #174EA6;\n",
|
1287 |
+
" }\n",
|
1288 |
+
"\n",
|
1289 |
+
" [theme=dark] .colab-df-convert {\n",
|
1290 |
+
" background-color: #3B4455;\n",
|
1291 |
+
" fill: #D2E3FC;\n",
|
1292 |
+
" }\n",
|
1293 |
+
"\n",
|
1294 |
+
" [theme=dark] .colab-df-convert:hover {\n",
|
1295 |
+
" background-color: #434B5C;\n",
|
1296 |
+
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
|
1297 |
+
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
|
1298 |
+
" fill: #FFFFFF;\n",
|
1299 |
+
" }\n",
|
1300 |
+
" </style>\n",
|
1301 |
+
"\n",
|
1302 |
+
" <script>\n",
|
1303 |
+
" const buttonEl =\n",
|
1304 |
+
" document.querySelector('#df-f5ef419f-52cd-4661-92e3-493f6c907f3e button.colab-df-convert');\n",
|
1305 |
+
" buttonEl.style.display =\n",
|
1306 |
+
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
|
1307 |
+
"\n",
|
1308 |
+
" async function convertToInteractive(key) {\n",
|
1309 |
+
" const element = document.querySelector('#df-f5ef419f-52cd-4661-92e3-493f6c907f3e');\n",
|
1310 |
+
" const dataTable =\n",
|
1311 |
+
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
|
1312 |
+
" [key], {});\n",
|
1313 |
+
" if (!dataTable) return;\n",
|
1314 |
+
"\n",
|
1315 |
+
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
|
1316 |
+
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
|
1317 |
+
" + ' to learn more about interactive tables.';\n",
|
1318 |
+
" element.innerHTML = '';\n",
|
1319 |
+
" dataTable['output_type'] = 'display_data';\n",
|
1320 |
+
" await google.colab.output.renderOutput(dataTable, element);\n",
|
1321 |
+
" const docLink = document.createElement('div');\n",
|
1322 |
+
" docLink.innerHTML = docLinkHtml;\n",
|
1323 |
+
" element.appendChild(docLink);\n",
|
1324 |
+
" }\n",
|
1325 |
+
" </script>\n",
|
1326 |
+
" </div>\n",
|
1327 |
+
" </div>\n",
|
1328 |
+
" "
|
1329 |
+
]
|
1330 |
+
},
|
1331 |
+
"metadata": {},
|
1332 |
+
"execution_count": 4
|
1333 |
+
}
|
1334 |
+
]
|
1335 |
+
},
|
1336 |
+
{
|
1337 |
+
"cell_type": "markdown",
|
1338 |
+
"source": [
|
1339 |
+
"### Файнтюн модели"
|
1340 |
+
],
|
1341 |
+
"metadata": {
|
1342 |
+
"id": "u-03LX5EBtED"
|
1343 |
+
}
|
1344 |
+
},
|
1345 |
+
{
|
1346 |
+
"cell_type": "code",
|
1347 |
+
"execution_count": 5,
|
1348 |
+
"metadata": {
|
1349 |
+
"colab": {
|
1350 |
+
"base_uri": "https://localhost:8080/"
|
1351 |
+
},
|
1352 |
+
"id": "kgsVl04L9r0o",
|
1353 |
+
"outputId": "1933d7b0-0ea1-485c-a1b9-05066786f448"
|
1354 |
+
},
|
1355 |
+
"outputs": [
|
1356 |
+
{
|
1357 |
+
"output_type": "stream",
|
1358 |
+
"name": "stdout",
|
1359 |
+
"text": [
|
1360 |
+
"Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n",
|
1361 |
+
"Collecting transformers\n",
|
1362 |
+
" Downloading transformers-4.28.1-py3-none-any.whl (7.0 MB)\n",
|
1363 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m7.0/7.0 MB\u001b[0m \u001b[31m98.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
1364 |
+
"\u001b[?25hCollecting tokenizers!=0.11.3,<0.14,>=0.11.1\n",
|
1365 |
+
" Downloading tokenizers-0.13.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.8 MB)\n",
|
1366 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m7.8/7.8 MB\u001b[0m \u001b[31m102.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
1367 |
+
"\u001b[?25hCollecting huggingface-hub<1.0,>=0.11.0\n",
|
1368 |
+
" Downloading huggingface_hub-0.13.4-py3-none-any.whl (200 kB)\n",
|
1369 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m200.1/200.1 kB\u001b[0m \u001b[31m12.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
1370 |
+
"\u001b[?25hRequirement already satisfied: filelock in /usr/local/lib/python3.9/dist-packages (from transformers) (3.11.0)\n",
|
1371 |
+
"Requirement already satisfied: requests in /usr/local/lib/python3.9/dist-packages (from transformers) (2.27.1)\n",
|
1372 |
+
"Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.9/dist-packages (from transformers) (6.0)\n",
|
1373 |
+
"Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.9/dist-packages (from transformers) (1.22.4)\n",
|
1374 |
+
"Requirement already satisfied: tqdm>=4.27 in /usr/local/lib/python3.9/dist-packages (from transformers) (4.65.0)\n",
|
1375 |
+
"Requirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.9/dist-packages (from transformers) (2022.10.31)\n",
|
1376 |
+
"Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.9/dist-packages (from transformers) (23.0)\n",
|
1377 |
+
"Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.9/dist-packages (from huggingface-hub<1.0,>=0.11.0->transformers) (4.5.0)\n",
|
1378 |
+
"Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.9/dist-packages (from requests->transformers) (2022.12.7)\n",
|
1379 |
+
"Requirement already satisfied: urllib3<1.27,>=1.21.1 in /usr/local/lib/python3.9/dist-packages (from requests->transformers) (1.26.15)\n",
|
1380 |
+
"Requirement already satisfied: charset-normalizer~=2.0.0 in /usr/local/lib/python3.9/dist-packages (from requests->transformers) (2.0.12)\n",
|
1381 |
+
"Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.9/dist-packages (from requests->transformers) (3.4)\n",
|
1382 |
+
"Installing collected packages: tokenizers, huggingface-hub, transformers\n",
|
1383 |
+
"Successfully installed huggingface-hub-0.13.4 tokenizers-0.13.3 transformers-4.28.1\n"
|
1384 |
+
]
|
1385 |
+
}
|
1386 |
+
],
|
1387 |
+
"source": [
|
1388 |
+
"!pip install transformers\n",
|
1389 |
+
"import transformers"
|
1390 |
+
]
|
1391 |
+
},
|
1392 |
+
{
|
1393 |
+
"cell_type": "code",
|
1394 |
+
"source": [
|
1395 |
+
"!pip install datasets"
|
1396 |
+
],
|
1397 |
+
"metadata": {
|
1398 |
+
"colab": {
|
1399 |
+
"base_uri": "https://localhost:8080/"
|
1400 |
+
},
|
1401 |
+
"id": "D8OtthEoJ-jJ",
|
1402 |
+
"outputId": "aea9ef62-08cd-40c5-8d26-4590fb87de8b"
|
1403 |
+
},
|
1404 |
+
"execution_count": 6,
|
1405 |
+
"outputs": [
|
1406 |
+
{
|
1407 |
+
"output_type": "stream",
|
1408 |
+
"name": "stdout",
|
1409 |
+
"text": [
|
1410 |
+
"Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n",
|
1411 |
+
"Collecting datasets\n",
|
1412 |
+
" Downloading datasets-2.11.0-py3-none-any.whl (468 kB)\n",
|
1413 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m468.7/468.7 kB\u001b[0m \u001b[31m5.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
1414 |
+
"\u001b[?25hCollecting dill<0.3.7,>=0.3.0\n",
|
1415 |
+
" Downloading dill-0.3.6-py3-none-any.whl (110 kB)\n",
|
1416 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m110.5/110.5 kB\u001b[0m \u001b[31m14.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
1417 |
+
"\u001b[?25hRequirement already satisfied: fsspec[http]>=2021.11.1 in /usr/local/lib/python3.9/dist-packages (from datasets) (2023.4.0)\n",
|
1418 |
+
"Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.9/dist-packages (from datasets) (6.0)\n",
|
1419 |
+
"Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.9/dist-packages (from datasets) (1.22.4)\n",
|
1420 |
+
"Requirement already satisfied: packaging in /usr/local/lib/python3.9/dist-packages (from datasets) (23.0)\n",
|
1421 |
+
"Requirement already satisfied: huggingface-hub<1.0.0,>=0.11.0 in /usr/local/lib/python3.9/dist-packages (from datasets) (0.13.4)\n",
|
1422 |
+
"Requirement already satisfied: tqdm>=4.62.1 in /usr/local/lib/python3.9/dist-packages (from datasets) (4.65.0)\n",
|
1423 |
+
"Collecting responses<0.19\n",
|
1424 |
+
" Downloading responses-0.18.0-py3-none-any.whl (38 kB)\n",
|
1425 |
+
"Collecting xxhash\n",
|
1426 |
+
" Downloading xxhash-3.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (212 kB)\n",
|
1427 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m212.2/212.2 kB\u001b[0m \u001b[31m28.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
1428 |
+
"\u001b[?25hCollecting aiohttp\n",
|
1429 |
+
" Downloading aiohttp-3.8.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.0 MB)\n",
|
1430 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.0/1.0 MB\u001b[0m \u001b[31m51.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
1431 |
+
"\u001b[?25hRequirement already satisfied: pyarrow>=8.0.0 in /usr/local/lib/python3.9/dist-packages (from datasets) (9.0.0)\n",
|
1432 |
+
"Collecting multiprocess\n",
|
1433 |
+
" Downloading multiprocess-0.70.14-py39-none-any.whl (132 kB)\n",
|
1434 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m132.9/132.9 kB\u001b[0m \u001b[31m13.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
1435 |
+
"\u001b[?25hRequirement already satisfied: pandas in /usr/local/lib/python3.9/dist-packages (from datasets) (1.5.3)\n",
|
1436 |
+
"Requirement already satisfied: requests>=2.19.0 in /usr/local/lib/python3.9/dist-packages (from datasets) (2.27.1)\n",
|
1437 |
+
"Collecting yarl<2.0,>=1.0\n",
|
1438 |
+
" Downloading yarl-1.8.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (264 kB)\n",
|
1439 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m264.6/264.6 kB\u001b[0m \u001b[31m23.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
1440 |
+
"\u001b[?25hCollecting aiosignal>=1.1.2\n",
|
1441 |
+
" Downloading aiosignal-1.3.1-py3-none-any.whl (7.6 kB)\n",
|
1442 |
+
"Requirement already satisfied: attrs>=17.3.0 in /usr/local/lib/python3.9/dist-packages (from aiohttp->datasets) (22.2.0)\n",
|
1443 |
+
"Collecting async-timeout<5.0,>=4.0.0a3\n",
|
1444 |
+
" Downloading async_timeout-4.0.2-py3-none-any.whl (5.8 kB)\n",
|
1445 |
+
"Collecting multidict<7.0,>=4.5\n",
|
1446 |
+
" Downloading multidict-6.0.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (114 kB)\n",
|
1447 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m114.2/114.2 kB\u001b[0m \u001b[31m15.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
1448 |
+
"\u001b[?25hRequirement already satisfied: charset-normalizer<4.0,>=2.0 in /usr/local/lib/python3.9/dist-packages (from aiohttp->datasets) (2.0.12)\n",
|
1449 |
+
"Collecting frozenlist>=1.1.1\n",
|
1450 |
+
" Downloading frozenlist-1.3.3-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (158 kB)\n",
|
1451 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m158.8/158.8 kB\u001b[0m \u001b[31m7.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
1452 |
+
"\u001b[?25hRequirement already satisfied: filelock in /usr/local/lib/python3.9/dist-packages (from huggingface-hub<1.0.0,>=0.11.0->datasets) (3.11.0)\n",
|
1453 |
+
"Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.9/dist-packages (from huggingface-hub<1.0.0,>=0.11.0->datasets) (4.5.0)\n",
|
1454 |
+
"Requirement already satisfied: urllib3<1.27,>=1.21.1 in /usr/local/lib/python3.9/dist-packages (from requests>=2.19.0->datasets) (1.26.15)\n",
|
1455 |
+
"Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.9/dist-packages (from requests>=2.19.0->datasets) (3.4)\n",
|
1456 |
+
"Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.9/dist-packages (from requests>=2.19.0->datasets) (2022.12.7)\n",
|
1457 |
+
"Requirement already satisfied: python-dateutil>=2.8.1 in /usr/local/lib/python3.9/dist-packages (from pandas->datasets) (2.8.2)\n",
|
1458 |
+
"Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.9/dist-packages (from pandas->datasets) (2022.7.1)\n",
|
1459 |
+
"Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.9/dist-packages (from python-dateutil>=2.8.1->pandas->datasets) (1.16.0)\n",
|
1460 |
+
"Installing collected packages: xxhash, multidict, frozenlist, dill, async-timeout, yarl, responses, multiprocess, aiosignal, aiohttp, datasets\n",
|
1461 |
+
"Successfully installed aiohttp-3.8.4 aiosignal-1.3.1 async-timeout-4.0.2 datasets-2.11.0 dill-0.3.6 frozenlist-1.3.3 multidict-6.0.4 multiprocess-0.70.14 responses-0.18.0 xxhash-3.2.0 yarl-1.8.2\n"
|
1462 |
+
]
|
1463 |
+
}
|
1464 |
+
]
|
1465 |
+
},
|
1466 |
+
{
|
1467 |
+
"cell_type": "code",
|
1468 |
+
"source": [
|
1469 |
+
"from sklearn.model_selection import train_test_split\n",
|
1470 |
+
"from transformers import AutoModelForSequenceClassification, AutoTokenizer, TrainingArguments, Trainer, IntervalStrategy\n",
|
1471 |
+
"from datasets import load_metric, Dataset, ClassLabel\n",
|
1472 |
+
"\n",
|
1473 |
+
"\n",
|
1474 |
+
"X_train, X_test, y_train, y_test = train_test_split(\n",
|
1475 |
+
" data,\n",
|
1476 |
+
" data['target'],\n",
|
1477 |
+
" test_size=0.1,\n",
|
1478 |
+
" random_state=42\n",
|
1479 |
+
")\n",
|
1480 |
+
"\n",
|
1481 |
+
"tokenizer = AutoTokenizer.from_pretrained('adalbertojunior/distilbert-portuguese-cased', do_lower_case=False)\n",
|
1482 |
+
"\n",
|
1483 |
+
"class_label = ClassLabel(names=['pt','pt_br'])\n",
|
1484 |
+
"\n",
|
1485 |
+
"def tokenize(text):\n",
|
1486 |
+
" tokens = tokenizer(text['text'], padding=True, truncation=True, max_length=256, add_special_tokens = True)\n",
|
1487 |
+
" tokens['label'] = class_label.str2int(text['target'])\n",
|
1488 |
+
" return tokens\n",
|
1489 |
+
"\n",
|
1490 |
+
"train_ds = Dataset.from_pandas(X_train).map(tokenize, batched=True)\n",
|
1491 |
+
"test_ds = Dataset.from_pandas(X_test).map(tokenize, batched=True)\n",
|
1492 |
+
"\n",
|
1493 |
+
"train_ds.set_format('torch', columns=['input_ids', 'attention_mask', 'label'])\n",
|
1494 |
+
"test_ds.set_format('torch', columns=['input_ids', 'attention_mask', 'label'])"
|
1495 |
+
],
|
1496 |
+
"metadata": {
|
1497 |
+
"colab": {
|
1498 |
+
"base_uri": "https://localhost:8080/",
|
1499 |
+
"height": 17,
|
1500 |
+
"referenced_widgets": [
|
1501 |
+
"79e7afed6f204ced8012f9853e8ce153",
|
1502 |
+
"92e3b0a9ee344022b0bf16a6617239b3",
|
1503 |
+
"09fa538b6a05498282c2438a6c854fd1",
|
1504 |
+
"3b905f68919049608a3eb3c48da12032",
|
1505 |
+
"eee35ecb15c84ee994f9ffa479feeaaf",
|
1506 |
+
"c17b6f3b3436490e923835add11f8d74",
|
1507 |
+
"4d5a02eb385d470f8b3c68a8db60561c",
|
1508 |
+
"7946964d5e8741ba86b2662397ccb891",
|
1509 |
+
"5624c10fc93943dda1e0c93c1fc2fbba",
|
1510 |
+
"101f117dfb0a441e807757524b857350",
|
1511 |
+
"77819fe20f514982b8547abff9361b2d",
|
1512 |
+
"8f76ba596bdc427aa868685b151f51d8",
|
1513 |
+
"a14ec2755a2a477aa654287af8a463a3",
|
1514 |
+
"cb82b162aae342888f353ea2fe507015",
|
1515 |
+
"ebb3365ce29e476ab28201e9b825e302",
|
1516 |
+
"31e7fabdde2f4129ab38d49b5c5b1d50",
|
1517 |
+
"b2fb5695afd04756975281c5a04fbcaf",
|
1518 |
+
"6e358ea9a32a486db0c81a5f54a112e9",
|
1519 |
+
"647a42b85a8044229d71fd1e7318878b",
|
1520 |
+
"f439095945fb413e916059f01f67bc79",
|
1521 |
+
"fece699d83854b5e876164da8a3b6f3a",
|
1522 |
+
"814444ea270d4739aa8588937801800b"
|
1523 |
+
]
|
1524 |
+
},
|
1525 |
+
"id": "Nf7Cew2HLKi6",
|
1526 |
+
"outputId": "f107d518-4016-4d4a-d3b8-161f4724bce4"
|
1527 |
+
},
|
1528 |
+
"execution_count": 46,
|
1529 |
+
"outputs": [
|
1530 |
+
{
|
1531 |
+
"output_type": "display_data",
|
1532 |
+
"data": {
|
1533 |
+
"text/plain": [
|
1534 |
+
"Map: 0%| | 0/18000 [00:00<?, ? examples/s]"
|
1535 |
+
],
|
1536 |
+
"application/vnd.jupyter.widget-view+json": {
|
1537 |
+
"version_major": 2,
|
1538 |
+
"version_minor": 0,
|
1539 |
+
"model_id": "79e7afed6f204ced8012f9853e8ce153"
|
1540 |
+
}
|
1541 |
+
},
|
1542 |
+
"metadata": {}
|
1543 |
+
},
|
1544 |
+
{
|
1545 |
+
"output_type": "display_data",
|
1546 |
+
"data": {
|
1547 |
+
"text/plain": [
|
1548 |
+
"Map: 0%| | 0/2000 [00:00<?, ? examples/s]"
|
1549 |
+
],
|
1550 |
+
"application/vnd.jupyter.widget-view+json": {
|
1551 |
+
"version_major": 2,
|
1552 |
+
"version_minor": 0,
|
1553 |
+
"model_id": "8f76ba596bdc427aa868685b151f51d8"
|
1554 |
+
}
|
1555 |
+
},
|
1556 |
+
"metadata": {}
|
1557 |
+
}
|
1558 |
+
]
|
1559 |
+
},
|
1560 |
+
{
|
1561 |
+
"cell_type": "code",
|
1562 |
+
"source": [
|
1563 |
+
"from transformers import BertForSequenceClassification, AdamW, BertConfig\n",
|
1564 |
+
"\n",
|
1565 |
+
"model = BertForSequenceClassification.from_pretrained(\n",
|
1566 |
+
" 'adalbertojunior/distilbert-portuguese-cased',\n",
|
1567 |
+
" num_labels = 2,\n",
|
1568 |
+
" output_attentions = False, \n",
|
1569 |
+
" output_hidden_states = False,\n",
|
1570 |
+
")"
|
1571 |
+
],
|
1572 |
+
"metadata": {
|
1573 |
+
"colab": {
|
1574 |
+
"base_uri": "https://localhost:8080/",
|
1575 |
+
"height": 105,
|
1576 |
+
"referenced_widgets": [
|
1577 |
+
"00047affc56f494c82268e7a8bc2c53c",
|
1578 |
+
"dd7a5a0c04fa4b66a0b5078b0a3e59e0",
|
1579 |
+
"eeaf71899a6743a081f79552dfc1672b",
|
1580 |
+
"23f2d28b36c84ea78422ef020d0d5e4b",
|
1581 |
+
"02a6351920ba4a0689b19bb9531dc8df",
|
1582 |
+
"2859d235432e4d12a78f55412ba8c569",
|
1583 |
+
"7a8e9cb5072b47fa9a5cee174d29bc47",
|
1584 |
+
"b6f515df241e44f7ba04114423fc1f7e",
|
1585 |
+
"7fad565b40de40c2b3d8d72d8c50111e",
|
1586 |
+
"0c271f3f91314bd094d8db4834c90e41",
|
1587 |
+
"243a2bc40dbd48d2910616fa0e1a01a6"
|
1588 |
+
]
|
1589 |
+
},
|
1590 |
+
"id": "xe7ooV6LXHrm",
|
1591 |
+
"outputId": "f4e0e785-ce91-4be3-cb19-675f94dc3f46"
|
1592 |
+
},
|
1593 |
+
"execution_count": 12,
|
1594 |
+
"outputs": [
|
1595 |
+
{
|
1596 |
+
"output_type": "display_data",
|
1597 |
+
"data": {
|
1598 |
+
"text/plain": [
|
1599 |
+
"Downloading pytorch_model.bin: 0%| | 0.00/266M [00:00<?, ?B/s]"
|
1600 |
+
],
|
1601 |
+
"application/vnd.jupyter.widget-view+json": {
|
1602 |
+
"version_major": 2,
|
1603 |
+
"version_minor": 0,
|
1604 |
+
"model_id": "00047affc56f494c82268e7a8bc2c53c"
|
1605 |
+
}
|
1606 |
+
},
|
1607 |
+
"metadata": {}
|
1608 |
+
},
|
1609 |
+
{
|
1610 |
+
"output_type": "stream",
|
1611 |
+
"name": "stderr",
|
1612 |
+
"text": [
|
1613 |
+
"Some weights of BertForSequenceClassification were not initialized from the model checkpoint at adalbertojunior/distilbert-portuguese-cased and are newly initialized: ['classifier.bias', 'classifier.weight']\n",
|
1614 |
+
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
|
1615 |
+
]
|
1616 |
+
}
|
1617 |
+
]
|
1618 |
+
},
|
1619 |
+
{
|
1620 |
+
"cell_type": "code",
|
1621 |
+
"source": [
|
1622 |
+
"import torch\n",
|
1623 |
+
"\n",
|
1624 |
+
"device = 'cuda' if torch.cuda.is_available() else 'cpu'\n",
|
1625 |
+
"model.to(device)\n",
|
1626 |
+
"device"
|
1627 |
+
],
|
1628 |
+
"metadata": {
|
1629 |
+
"colab": {
|
1630 |
+
"base_uri": "https://localhost:8080/",
|
1631 |
+
"height": 36
|
1632 |
+
},
|
1633 |
+
"id": "0PZkmqv9br7j",
|
1634 |
+
"outputId": "8710153b-357e-4116-93d7-ced770ef137b"
|
1635 |
+
},
|
1636 |
+
"execution_count": 14,
|
1637 |
+
"outputs": [
|
1638 |
+
{
|
1639 |
+
"output_type": "execute_result",
|
1640 |
+
"data": {
|
1641 |
+
"text/plain": [
|
1642 |
+
"'cuda'"
|
1643 |
+
],
|
1644 |
+
"application/vnd.google.colaboratory.intrinsic+json": {
|
1645 |
+
"type": "string"
|
1646 |
+
}
|
1647 |
+
},
|
1648 |
+
"metadata": {},
|
1649 |
+
"execution_count": 14
|
1650 |
+
}
|
1651 |
+
]
|
1652 |
+
},
|
1653 |
+
{
|
1654 |
+
"cell_type": "code",
|
1655 |
+
"source": [
|
1656 |
+
"params = list(model.named_parameters())\n",
|
1657 |
+
"\n",
|
1658 |
+
"print('The BERT model has {:} different named parameters.\\n'.format(len(params)))\n",
|
1659 |
+
"\n",
|
1660 |
+
"print('==== Embedding Layer ====\\n')\n",
|
1661 |
+
"\n",
|
1662 |
+
"for p in params[0:5]:\n",
|
1663 |
+
" print(\"{:<55} {:>12} {}\".format(p[0], str(tuple(p[1].size())), p[1].requires_grad))\n",
|
1664 |
+
"\n",
|
1665 |
+
"print('\\n==== First Transformer ====\\n')\n",
|
1666 |
+
"\n",
|
1667 |
+
"for p in params[5:21]:\n",
|
1668 |
+
" print(\"{:<55} {:>12} {}\".format(p[0], str(tuple(p[1].size())), p[1].requires_grad))\n",
|
1669 |
+
"\n",
|
1670 |
+
"print('\\n==== Output Layer ====\\n')\n",
|
1671 |
+
"\n",
|
1672 |
+
"for p in params[-4:]:\n",
|
1673 |
+
" print(\"{:<55} {:>12} {}\".format(p[0], str(tuple(p[1].size())), p[1].requires_grad))"
|
1674 |
+
],
|
1675 |
+
"metadata": {
|
1676 |
+
"colab": {
|
1677 |
+
"base_uri": "https://localhost:8080/"
|
1678 |
+
},
|
1679 |
+
"id": "6KDOKbGCXHuQ",
|
1680 |
+
"outputId": "5d4cd088-3a0e-4be8-e7a4-427f3ba087c7"
|
1681 |
+
},
|
1682 |
+
"execution_count": 33,
|
1683 |
+
"outputs": [
|
1684 |
+
{
|
1685 |
+
"output_type": "stream",
|
1686 |
+
"name": "stdout",
|
1687 |
+
"text": [
|
1688 |
+
"The BERT model has 105 different named parameters.\n",
|
1689 |
+
"\n",
|
1690 |
+
"==== Embedding Layer ====\n",
|
1691 |
+
"\n",
|
1692 |
+
"bert.embeddings.word_embeddings.weight (29794, 768) False\n",
|
1693 |
+
"bert.embeddings.position_embeddings.weight (512, 768) False\n",
|
1694 |
+
"bert.embeddings.token_type_embeddings.weight (2, 768) False\n",
|
1695 |
+
"bert.embeddings.LayerNorm.weight (768,) False\n",
|
1696 |
+
"bert.embeddings.LayerNorm.bias (768,) False\n",
|
1697 |
+
"\n",
|
1698 |
+
"==== First Transformer ====\n",
|
1699 |
+
"\n",
|
1700 |
+
"bert.encoder.layer.0.attention.self.query.weight (768, 768) False\n",
|
1701 |
+
"bert.encoder.layer.0.attention.self.query.bias (768,) False\n",
|
1702 |
+
"bert.encoder.layer.0.attention.self.key.weight (768, 768) False\n",
|
1703 |
+
"bert.encoder.layer.0.attention.self.key.bias (768,) False\n",
|
1704 |
+
"bert.encoder.layer.0.attention.self.value.weight (768, 768) False\n",
|
1705 |
+
"bert.encoder.layer.0.attention.self.value.bias (768,) False\n",
|
1706 |
+
"bert.encoder.layer.0.attention.output.dense.weight (768, 768) False\n",
|
1707 |
+
"bert.encoder.layer.0.attention.output.dense.bias (768,) False\n",
|
1708 |
+
"bert.encoder.layer.0.attention.output.LayerNorm.weight (768,) False\n",
|
1709 |
+
"bert.encoder.layer.0.attention.output.LayerNorm.bias (768,) False\n",
|
1710 |
+
"bert.encoder.layer.0.intermediate.dense.weight (3072, 768) False\n",
|
1711 |
+
"bert.encoder.layer.0.intermediate.dense.bias (3072,) False\n",
|
1712 |
+
"bert.encoder.layer.0.output.dense.weight (768, 3072) False\n",
|
1713 |
+
"bert.encoder.layer.0.output.dense.bias (768,) False\n",
|
1714 |
+
"bert.encoder.layer.0.output.LayerNorm.weight (768,) False\n",
|
1715 |
+
"bert.encoder.layer.0.output.LayerNorm.bias (768,) False\n",
|
1716 |
+
"\n",
|
1717 |
+
"==== Output Layer ====\n",
|
1718 |
+
"\n",
|
1719 |
+
"bert.pooler.dense.weight (768, 768) False\n",
|
1720 |
+
"bert.pooler.dense.bias (768,) False\n",
|
1721 |
+
"classifier.weight (2, 768) True\n",
|
1722 |
+
"classifier.bias (2,) True\n"
|
1723 |
+
]
|
1724 |
+
}
|
1725 |
+
]
|
1726 |
+
},
|
1727 |
+
{
|
1728 |
+
"cell_type": "code",
|
1729 |
+
"source": [
|
1730 |
+
"for parameter in model.parameters():\n",
|
1731 |
+
" parameter.requires_grad = False\n",
|
1732 |
+
"for parameter in model.classifier.parameters():\n",
|
1733 |
+
" parameter.requires_grad = True"
|
1734 |
+
],
|
1735 |
+
"metadata": {
|
1736 |
+
"id": "9DOy7eY5Y_px"
|
1737 |
+
},
|
1738 |
+
"execution_count": 16,
|
1739 |
+
"outputs": []
|
1740 |
+
},
|
1741 |
+
{
|
1742 |
+
"cell_type": "code",
|
1743 |
+
"source": [
|
1744 |
+
"import numpy as np\n",
|
1745 |
+
"\n",
|
1746 |
+
"training_args = TrainingArguments(\n",
|
1747 |
+
" output_dir=\"./trainer_out\",\n",
|
1748 |
+
" learning_rate=2e-4,\n",
|
1749 |
+
" per_device_train_batch_size=256,\n",
|
1750 |
+
" per_device_eval_batch_size=256,\n",
|
1751 |
+
" num_train_epochs=5,\n",
|
1752 |
+
" weight_decay=0.01,\n",
|
1753 |
+
" evaluation_strategy=IntervalStrategy.EPOCH,\n",
|
1754 |
+
")\n",
|
1755 |
+
"\n",
|
1756 |
+
"metric = load_metric('accuracy')\n",
|
1757 |
+
"\n",
|
1758 |
+
"def compute_metrics(eval_pred):\n",
|
1759 |
+
" logits, labels = eval_pred\n",
|
1760 |
+
" predictions = np.argmax(logits, axis=-1)\n",
|
1761 |
+
" return metric.compute(predictions=predictions, references=labels)\n",
|
1762 |
+
"\n",
|
1763 |
+
"# # transfer learning\n",
|
1764 |
+
"# for module in list(model.modules())[:-3]:\n",
|
1765 |
+
"# for param in module.parameters():\n",
|
1766 |
+
"# param.requires_grad = False\n",
|
1767 |
+
"\n",
|
1768 |
+
"trainer = Trainer(\n",
|
1769 |
+
" model=model,\n",
|
1770 |
+
" args=training_args,\n",
|
1771 |
+
" train_dataset=train_ds,\n",
|
1772 |
+
" eval_dataset=test_ds,\n",
|
1773 |
+
" tokenizer=tokenizer,\n",
|
1774 |
+
" compute_metrics=compute_metrics,\n",
|
1775 |
+
")\n",
|
1776 |
+
"\n",
|
1777 |
+
"trainer.train()"
|
1778 |
+
],
|
1779 |
+
"metadata": {
|
1780 |
+
"colab": {
|
1781 |
+
"base_uri": "https://localhost:8080/",
|
1782 |
+
"height": 362
|
1783 |
+
},
|
1784 |
+
"id": "WiAQCmLZXHzy",
|
1785 |
+
"outputId": "a9f508ae-3eb8-4b7d-d333-193f2d236796"
|
1786 |
+
},
|
1787 |
+
"execution_count": 47,
|
1788 |
+
"outputs": [
|
1789 |
+
{
|
1790 |
+
"output_type": "stream",
|
1791 |
+
"name": "stderr",
|
1792 |
+
"text": [
|
1793 |
+
"/usr/local/lib/python3.9/dist-packages/transformers/optimization.py:391: FutureWarning: This implementation of AdamW is deprecated and will be removed in a future version. Use the PyTorch implementation torch.optim.AdamW instead, or set `no_deprecation_warning=True` to disable this warning\n",
|
1794 |
+
" warnings.warn(\n",
|
1795 |
+
"You're using a BertTokenizerFast tokenizer. Please note that with a fast tokenizer, using the `__call__` method is faster than using a method to encode the text followed by a call to the `pad` method to get a padded encoding.\n"
|
1796 |
+
]
|
1797 |
+
},
|
1798 |
+
{
|
1799 |
+
"output_type": "display_data",
|
1800 |
+
"data": {
|
1801 |
+
"text/plain": [
|
1802 |
+
"<IPython.core.display.HTML object>"
|
1803 |
+
],
|
1804 |
+
"text/html": [
|
1805 |
+
"\n",
|
1806 |
+
" <div>\n",
|
1807 |
+
" \n",
|
1808 |
+
" <progress value='355' max='355' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
|
1809 |
+
" [355/355 12:02, Epoch 5/5]\n",
|
1810 |
+
" </div>\n",
|
1811 |
+
" <table border=\"1\" class=\"dataframe\">\n",
|
1812 |
+
" <thead>\n",
|
1813 |
+
" <tr style=\"text-align: left;\">\n",
|
1814 |
+
" <th>Epoch</th>\n",
|
1815 |
+
" <th>Training Loss</th>\n",
|
1816 |
+
" <th>Validation Loss</th>\n",
|
1817 |
+
" <th>Accuracy</th>\n",
|
1818 |
+
" </tr>\n",
|
1819 |
+
" </thead>\n",
|
1820 |
+
" <tbody>\n",
|
1821 |
+
" <tr>\n",
|
1822 |
+
" <td>1</td>\n",
|
1823 |
+
" <td>No log</td>\n",
|
1824 |
+
" <td>0.634915</td>\n",
|
1825 |
+
" <td>0.663500</td>\n",
|
1826 |
+
" </tr>\n",
|
1827 |
+
" <tr>\n",
|
1828 |
+
" <td>2</td>\n",
|
1829 |
+
" <td>No log</td>\n",
|
1830 |
+
" <td>0.628911</td>\n",
|
1831 |
+
" <td>0.670500</td>\n",
|
1832 |
+
" </tr>\n",
|
1833 |
+
" <tr>\n",
|
1834 |
+
" <td>3</td>\n",
|
1835 |
+
" <td>No log</td>\n",
|
1836 |
+
" <td>0.625601</td>\n",
|
1837 |
+
" <td>0.669000</td>\n",
|
1838 |
+
" </tr>\n",
|
1839 |
+
" <tr>\n",
|
1840 |
+
" <td>4</td>\n",
|
1841 |
+
" <td>No log</td>\n",
|
1842 |
+
" <td>0.623909</td>\n",
|
1843 |
+
" <td>0.664000</td>\n",
|
1844 |
+
" </tr>\n",
|
1845 |
+
" <tr>\n",
|
1846 |
+
" <td>5</td>\n",
|
1847 |
+
" <td>No log</td>\n",
|
1848 |
+
" <td>0.623280</td>\n",
|
1849 |
+
" <td>0.664500</td>\n",
|
1850 |
+
" </tr>\n",
|
1851 |
+
" </tbody>\n",
|
1852 |
+
"</table><p>"
|
1853 |
+
]
|
1854 |
+
},
|
1855 |
+
"metadata": {}
|
1856 |
+
},
|
1857 |
+
{
|
1858 |
+
"output_type": "execute_result",
|
1859 |
+
"data": {
|
1860 |
+
"text/plain": [
|
1861 |
+
"TrainOutput(global_step=355, training_loss=0.6338723196110255, metrics={'train_runtime': 724.7707, 'train_samples_per_second': 124.177, 'train_steps_per_second': 0.49, 'total_flos': 5961032939520000.0, 'train_loss': 0.6338723196110255, 'epoch': 5.0})"
|
1862 |
+
]
|
1863 |
+
},
|
1864 |
+
"metadata": {},
|
1865 |
+
"execution_count": 47
|
1866 |
+
}
|
1867 |
+
]
|
1868 |
+
},
|
1869 |
+
{
|
1870 |
+
"cell_type": "code",
|
1871 |
+
"source": [
|
1872 |
+
"trainer.train()"
|
1873 |
+
],
|
1874 |
+
"metadata": {
|
1875 |
+
"colab": {
|
1876 |
+
"base_uri": "https://localhost:8080/",
|
1877 |
+
"height": 287
|
1878 |
+
},
|
1879 |
+
"id": "ounT1oDOniUI",
|
1880 |
+
"outputId": "50d5bd72-eab2-4be8-9f1d-04120b97cce9"
|
1881 |
+
},
|
1882 |
+
"execution_count": 53,
|
1883 |
+
"outputs": [
|
1884 |
+
{
|
1885 |
+
"output_type": "display_data",
|
1886 |
+
"data": {
|
1887 |
+
"text/plain": [
|
1888 |
+
"<IPython.core.display.HTML object>"
|
1889 |
+
],
|
1890 |
+
"text/html": [
|
1891 |
+
"\n",
|
1892 |
+
" <div>\n",
|
1893 |
+
" \n",
|
1894 |
+
" <progress value='355' max='355' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
|
1895 |
+
" [355/355 12:01, Epoch 5/5]\n",
|
1896 |
+
" </div>\n",
|
1897 |
+
" <table border=\"1\" class=\"dataframe\">\n",
|
1898 |
+
" <thead>\n",
|
1899 |
+
" <tr style=\"text-align: left;\">\n",
|
1900 |
+
" <th>Epoch</th>\n",
|
1901 |
+
" <th>Training Loss</th>\n",
|
1902 |
+
" <th>Validation Loss</th>\n",
|
1903 |
+
" <th>Accuracy</th>\n",
|
1904 |
+
" </tr>\n",
|
1905 |
+
" </thead>\n",
|
1906 |
+
" <tbody>\n",
|
1907 |
+
" <tr>\n",
|
1908 |
+
" <td>1</td>\n",
|
1909 |
+
" <td>No log</td>\n",
|
1910 |
+
" <td>0.623280</td>\n",
|
1911 |
+
" <td>0.664500</td>\n",
|
1912 |
+
" </tr>\n",
|
1913 |
+
" <tr>\n",
|
1914 |
+
" <td>2</td>\n",
|
1915 |
+
" <td>No log</td>\n",
|
1916 |
+
" <td>0.623280</td>\n",
|
1917 |
+
" <td>0.664500</td>\n",
|
1918 |
+
" </tr>\n",
|
1919 |
+
" <tr>\n",
|
1920 |
+
" <td>3</td>\n",
|
1921 |
+
" <td>No log</td>\n",
|
1922 |
+
" <td>0.623280</td>\n",
|
1923 |
+
" <td>0.664500</td>\n",
|
1924 |
+
" </tr>\n",
|
1925 |
+
" <tr>\n",
|
1926 |
+
" <td>4</td>\n",
|
1927 |
+
" <td>No log</td>\n",
|
1928 |
+
" <td>0.623280</td>\n",
|
1929 |
+
" <td>0.664500</td>\n",
|
1930 |
+
" </tr>\n",
|
1931 |
+
" <tr>\n",
|
1932 |
+
" <td>5</td>\n",
|
1933 |
+
" <td>No log</td>\n",
|
1934 |
+
" <td>0.623280</td>\n",
|
1935 |
+
" <td>0.664500</td>\n",
|
1936 |
+
" </tr>\n",
|
1937 |
+
" </tbody>\n",
|
1938 |
+
"</table><p>"
|
1939 |
+
]
|
1940 |
+
},
|
1941 |
+
"metadata": {}
|
1942 |
+
},
|
1943 |
+
{
|
1944 |
+
"output_type": "execute_result",
|
1945 |
+
"data": {
|
1946 |
+
"text/plain": [
|
1947 |
+
"TrainOutput(global_step=355, training_loss=0.6281896456866197, metrics={'train_runtime': 723.41, 'train_samples_per_second': 124.411, 'train_steps_per_second': 0.491, 'total_flos': 5961032939520000.0, 'train_loss': 0.6281896456866197, 'epoch': 5.0})"
|
1948 |
+
]
|
1949 |
+
},
|
1950 |
+
"metadata": {},
|
1951 |
+
"execution_count": 53
|
1952 |
+
}
|
1953 |
+
]
|
1954 |
+
},
|
1955 |
+
{
|
1956 |
+
"cell_type": "code",
|
1957 |
+
"source": [
|
1958 |
+
"trainer.save_model('./pt_br_model')"
|
1959 |
+
],
|
1960 |
+
"metadata": {
|
1961 |
+
"id": "Bp7qkdjkXH2j"
|
1962 |
+
},
|
1963 |
+
"execution_count": 54,
|
1964 |
+
"outputs": []
|
1965 |
+
},
|
1966 |
+
{
|
1967 |
+
"cell_type": "code",
|
1968 |
+
"source": [
|
1969 |
+
"!tar jcpvf model.tar.bz2 pt_br_model"
|
1970 |
+
],
|
1971 |
+
"metadata": {
|
1972 |
+
"colab": {
|
1973 |
+
"base_uri": "https://localhost:8080/"
|
1974 |
+
},
|
1975 |
+
"id": "Wmu5JQSue0Hb",
|
1976 |
+
"outputId": "54dae7e4-0c29-46ad-e304-04ab5703f1aa"
|
1977 |
+
},
|
1978 |
+
"execution_count": 55,
|
1979 |
+
"outputs": [
|
1980 |
+
{
|
1981 |
+
"output_type": "stream",
|
1982 |
+
"name": "stdout",
|
1983 |
+
"text": [
|
1984 |
+
"pt_br_model/\n",
|
1985 |
+
"pt_br_model/tokenizer_config.json\n",
|
1986 |
+
"pt_br_model/training_args.bin\n",
|
1987 |
+
"pt_br_model/vocab.txt\n",
|
1988 |
+
"pt_br_model/pytorch_model.bin\n",
|
1989 |
+
"pt_br_model/tokenizer.json\n",
|
1990 |
+
"pt_br_model/config.json\n",
|
1991 |
+
"pt_br_model/special_tokens_map.json\n"
|
1992 |
+
]
|
1993 |
+
}
|
1994 |
+
]
|
1995 |
+
},
|
1996 |
+
{
|
1997 |
+
"cell_type": "code",
|
1998 |
+
"source": [
|
1999 |
+
"!ls -al ./pt_br_model/*"
|
2000 |
+
],
|
2001 |
+
"metadata": {
|
2002 |
+
"colab": {
|
2003 |
+
"base_uri": "https://localhost:8080/"
|
2004 |
+
},
|
2005 |
+
"id": "evbwLlLIi3QK",
|
2006 |
+
"outputId": "c1736d23-8d93-4597-ed76-3428d8d75e82"
|
2007 |
+
},
|
2008 |
+
"execution_count": 42,
|
2009 |
+
"outputs": [
|
2010 |
+
{
|
2011 |
+
"output_type": "stream",
|
2012 |
+
"name": "stdout",
|
2013 |
+
"text": [
|
2014 |
+
"-rw-r--r-- 1 root root 752 Apr 15 10:51 ./pt_br_model/config.json\n",
|
2015 |
+
"-rw-r--r-- 1 root root 265629621 Apr 15 10:51 ./pt_br_model/pytorch_model.bin\n",
|
2016 |
+
"-rw-r--r-- 1 root root 125 Apr 15 10:51 ./pt_br_model/special_tokens_map.json\n",
|
2017 |
+
"-rw-r--r-- 1 root root 395 Apr 15 10:51 ./pt_br_model/tokenizer_config.json\n",
|
2018 |
+
"-rw-r--r-- 1 root root 678043 Apr 15 10:51 ./pt_br_model/tokenizer.json\n",
|
2019 |
+
"-rw-r--r-- 1 root root 3579 Apr 15 10:51 ./pt_br_model/training_args.bin\n",
|
2020 |
+
"-rw-r--r-- 1 root root 209528 Apr 15 10:51 ./pt_br_model/vocab.txt\n"
|
2021 |
+
]
|
2022 |
+
}
|
2023 |
+
]
|
2024 |
+
},
|
2025 |
+
{
|
2026 |
+
"cell_type": "code",
|
2027 |
+
"source": [
|
2028 |
+
"!ls -al"
|
2029 |
+
],
|
2030 |
+
"metadata": {
|
2031 |
+
"colab": {
|
2032 |
+
"base_uri": "https://localhost:8080/"
|
2033 |
+
},
|
2034 |
+
"id": "y68jWdM5jJJD",
|
2035 |
+
"outputId": "f9910474-5a0b-44da-b88d-ecaed8fae13a"
|
2036 |
+
},
|
2037 |
+
"execution_count": 44,
|
2038 |
+
"outputs": [
|
2039 |
+
{
|
2040 |
+
"output_type": "stream",
|
2041 |
+
"name": "stdout",
|
2042 |
+
"text": [
|
2043 |
+
"total 317924\n",
|
2044 |
+
"drwxr-xr-x 1 root root 4096 Apr 15 10:51 .\n",
|
2045 |
+
"drwxr-xr-x 1 root root 4096 Apr 15 10:18 ..\n",
|
2046 |
+
"drwxr-xr-x 4 root root 4096 Apr 13 13:29 .config\n",
|
2047 |
+
"-rw-r--r-- 1 root root 252222673 Apr 15 10:52 model.tar.bz2\n",
|
2048 |
+
"drwxr-xr-x 2 root root 4096 Apr 15 10:51 pt_br_model\n",
|
2049 |
+
"-rw-r--r-- 1 root root 41144160 Dec 3 2020 pt_br.txt\n",
|
2050 |
+
"-rw-r--r-- 1 root root 32155453 Dec 3 2020 pt.txt\n",
|
2051 |
+
"drwxr-xr-x 1 root root 4096 Apr 13 13:30 sample_data\n",
|
2052 |
+
"drwxr-xr-x 3 root root 4096 Apr 15 10:25 trainer_out\n"
|
2053 |
+
]
|
2054 |
+
}
|
2055 |
+
]
|
2056 |
+
},
|
2057 |
+
{
|
2058 |
+
"cell_type": "code",
|
2059 |
+
"source": [
|
2060 |
+
"!cp model.tar.bz2 /content/drive/MyDrive"
|
2061 |
+
],
|
2062 |
+
"metadata": {
|
2063 |
+
"id": "_4BB3YnvRHZw"
|
2064 |
+
},
|
2065 |
+
"execution_count": 56,
|
2066 |
+
"outputs": []
|
2067 |
+
},
|
2068 |
+
{
|
2069 |
+
"cell_type": "code",
|
2070 |
+
"source": [
|
2071 |
+
"print(transformers.__version__)"
|
2072 |
+
],
|
2073 |
+
"metadata": {
|
2074 |
+
"colab": {
|
2075 |
+
"base_uri": "https://localhost:8080/"
|
2076 |
+
},
|
2077 |
+
"id": "K-B-mwGryWOw",
|
2078 |
+
"outputId": "1742e546-04d3-47d7-e1bf-34da07ef35b8"
|
2079 |
+
},
|
2080 |
+
"execution_count": 58,
|
2081 |
+
"outputs": [
|
2082 |
+
{
|
2083 |
+
"output_type": "stream",
|
2084 |
+
"name": "stdout",
|
2085 |
+
"text": [
|
2086 |
+
"4.28.1\n"
|
2087 |
+
]
|
2088 |
+
}
|
2089 |
+
]
|
2090 |
+
}
|
2091 |
+
]
|
2092 |
+
}
|