Spaces:
Runtime error
Runtime error
| import torch | |
| import json | |
| import typing as tp | |
| import torch.nn.functional as F | |
| from torch import Tensor | |
| from datasets import ClassLabel | |
| import transformers | |
| from transformers import BertForSequenceClassification | |
| from transformers import BertForSequenceClassification, AutoTokenizer | |
| import numpy as np | |
| tokenizer = AutoTokenizer.from_pretrained('adalbertojunior/distilbert-portuguese-cased', do_lower_case=False) | |
| classes = ['pt','pt_br'] | |
| class_label = ClassLabel(names=classes) | |
| def get_model(): | |
| return BertForSequenceClassification.from_pretrained( | |
| './pt_br_model', | |
| num_labels = 2, | |
| output_attentions = False, | |
| output_hidden_states = False, | |
| ) | |
| model = get_model() | |
| text = 'hello' | |
| input_tensor = tokenizer(text, padding=True, truncation=True, max_length=256, add_special_tokens=True, return_tensors="pt") | |
| logits=model(**input_tensor).logits | |
| probabilities = F.softmax(logits, dim=1).flatten().tolist() | |
| maxidx = np.argmax(probabilities) | |
| print(classes[maxidx], probabilities[maxidx]) |