Spaces:
Runtime error
Runtime error
first try
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- app.py +75 -0
- configs/Base-RCNN-C4.yaml +18 -0
- configs/Base-RCNN-DilatedC5.yaml +31 -0
- configs/Base-RCNN-FPN-4gpu.yaml +44 -0
- configs/Base-RCNN-FPN.yaml +42 -0
- configs/Base-RetinaNet.yaml +25 -0
- configs/COCO-Detection/fast_rcnn_R_50_FPN_1x.yaml +17 -0
- configs/COCO-Detection/faster_rcnn_R_101_C4_3x.yaml +9 -0
- configs/COCO-Detection/faster_rcnn_R_101_DC5_3x.yaml +9 -0
- configs/COCO-Detection/faster_rcnn_R_101_FPN_3x.yaml +9 -0
- configs/COCO-Detection/faster_rcnn_R_50_C4_1x.yaml +6 -0
- configs/COCO-Detection/faster_rcnn_R_50_C4_3x.yaml +9 -0
- configs/COCO-Detection/faster_rcnn_R_50_DC5_1x.yaml +6 -0
- configs/COCO-Detection/faster_rcnn_R_50_DC5_3x.yaml +9 -0
- configs/COCO-Detection/faster_rcnn_R_50_FPN_1x.yaml +6 -0
- configs/COCO-Detection/faster_rcnn_R_50_FPN_3x.yaml +9 -0
- configs/COCO-Detection/faster_rcnn_X_101_32x8d_FPN_3x.yaml +13 -0
- configs/COCO-Detection/retinanet_R_101_FPN_3x.yaml +8 -0
- configs/COCO-Detection/retinanet_R_50_FPN_1x.py +9 -0
- configs/COCO-Detection/retinanet_R_50_FPN_1x.yaml +5 -0
- configs/COCO-Detection/retinanet_R_50_FPN_3x.yaml +8 -0
- configs/COCO-Detection/rpn_R_50_C4_1x.yaml +10 -0
- configs/COCO-Detection/rpn_R_50_FPN_1x.yaml +9 -0
- configs/COCO-InstanceSegmentation/.mask_rcnn_R_50_FPN_1x_4gpu.yaml.swp +0 -0
- configs/COCO-InstanceSegmentation/mask_rcnn_R_101_C4_3x.yaml +9 -0
- configs/COCO-InstanceSegmentation/mask_rcnn_R_101_DC5_3x.yaml +9 -0
- configs/COCO-InstanceSegmentation/mask_rcnn_R_101_FPN_3x.yaml +9 -0
- configs/COCO-InstanceSegmentation/mask_rcnn_R_101_FPN_3x_4gpu_transfiner.yaml +9 -0
- configs/COCO-InstanceSegmentation/mask_rcnn_R_101_FPN_3x_4gpu_transfiner_deform.yaml +11 -0
- configs/COCO-InstanceSegmentation/mask_rcnn_R_101_FPN_3x_4gpu_transfiner_lvis.yaml +12 -0
- configs/COCO-InstanceSegmentation/mask_rcnn_R_50_C4_1x.py +7 -0
- configs/COCO-InstanceSegmentation/mask_rcnn_R_50_C4_1x.yaml +6 -0
- configs/COCO-InstanceSegmentation/mask_rcnn_R_50_C4_3x.yaml +9 -0
- configs/COCO-InstanceSegmentation/mask_rcnn_R_50_DC5_1x.yaml +6 -0
- configs/COCO-InstanceSegmentation/mask_rcnn_R_50_DC5_3x.yaml +9 -0
- configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.py +7 -0
- configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml +6 -0
- configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x_4gpu.yaml +6 -0
- configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x_4gpu_transfiner.yaml +6 -0
- configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x_giou.yaml +12 -0
- configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml +9 -0
- configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x_4gpu_transfiner.yaml +9 -0
- configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x_4gpu_transfiner_deform.yaml +11 -0
- configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x_4gpu_transfiner_lvis.yaml +12 -0
- configs/COCO-InstanceSegmentation/mask_rcnn_X_101_32x8d_FPN_3x.yaml +13 -0
- configs/COCO-InstanceSegmentation/mask_rcnn_X_101_32x8d_FPN_3x_transfiner.yaml +13 -0
- configs/COCO-InstanceSegmentation/mask_rcnn_regnetx_4gf_dds_fpn_1x.py +34 -0
- configs/COCO-InstanceSegmentation/mask_rcnn_regnety_4gf_dds_fpn_1x.py +35 -0
- configs/COCO-Keypoints/Base-Keypoint-RCNN-FPN.yaml +15 -0
- configs/COCO-Keypoints/keypoint_rcnn_R_101_FPN_3x.yaml +8 -0
app.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#try:
|
2 |
+
# import detectron2
|
3 |
+
#except:
|
4 |
+
import os
|
5 |
+
os.system('pip install git+https://github.com/SysCV/transfiner.git')
|
6 |
+
|
7 |
+
from matplotlib.pyplot import axis
|
8 |
+
import gradio as gr
|
9 |
+
import requests
|
10 |
+
import numpy as np
|
11 |
+
from torch import nn
|
12 |
+
import requests
|
13 |
+
|
14 |
+
import torch
|
15 |
+
|
16 |
+
from detectron2 import model_zoo
|
17 |
+
from detectron2.engine import DefaultPredictor
|
18 |
+
from detectron2.config import get_cfg
|
19 |
+
from detectron2.utils.visualizer import Visualizer
|
20 |
+
from detectron2.data import MetadataCatalog
|
21 |
+
|
22 |
+
'''
|
23 |
+
url1 = 'https://cdn.pixabay.com/photo/2014/09/07/21/52/city-438393_1280.jpg'
|
24 |
+
r = requests.get(url1, allow_redirects=True)
|
25 |
+
open("city1.jpg", 'wb').write(r.content)
|
26 |
+
url2 = 'https://cdn.pixabay.com/photo/2016/02/19/11/36/canal-1209808_1280.jpg'
|
27 |
+
r = requests.get(url2, allow_redirects=True)
|
28 |
+
open("city2.jpg", 'wb').write(r.content)
|
29 |
+
'''
|
30 |
+
|
31 |
+
model_name='./configs/COCO-InstanceSegmentation/mask_rcnn_X_101_32x8d_FPN_3x.yaml'
|
32 |
+
|
33 |
+
# model = model_zoo.get(model_name, trained=True)
|
34 |
+
|
35 |
+
cfg = get_cfg()
|
36 |
+
# add project-specific config (e.g., TensorMask) here if you're not running a model in detectron2's core library
|
37 |
+
cfg.merge_from_file(model_zoo.get_config_file(model_name))
|
38 |
+
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5 # set threshold for this model
|
39 |
+
# Find a model from detectron2's model zoo. You can use the https://dl.fbaipublicfiles... url as w ell
|
40 |
+
cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url(model_name)
|
41 |
+
|
42 |
+
if not torch.cuda.is_available():
|
43 |
+
cfg.MODEL.DEVICE='cpu'
|
44 |
+
|
45 |
+
predictor = DefaultPredictor(cfg)
|
46 |
+
|
47 |
+
|
48 |
+
def inference(image):
|
49 |
+
img = np.array(image.resize((1024,1024)))
|
50 |
+
outputs = predictor(img)
|
51 |
+
|
52 |
+
v = Visualizer(img, MetadataCatalog.get(cfg.DATASETS.TRAIN[0]), scale=1.2)
|
53 |
+
out = v.draw_instance_predictions(outputs["instances"].to("cpu"))
|
54 |
+
|
55 |
+
return out.get_image()
|
56 |
+
|
57 |
+
|
58 |
+
|
59 |
+
title = "Detectron2-MaskRCNN X101"
|
60 |
+
description = "demo for Detectron2. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below.\
|
61 |
+
</br><b>Model: COCO-InstanceSegmentation/mask_rcnn_X_101_32x8d_FPN_3x.yaml</b>"
|
62 |
+
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2012.07177'>Simple Copy-Paste is a Strong Data Augmentation Method for Instance Segmentation</a> | <a href='https://github.com/facebookresearch/detectron2/blob/main/MODEL_ZOO.md'>Detectron model ZOO</a></p>"
|
63 |
+
|
64 |
+
gr.Interface(
|
65 |
+
inference,
|
66 |
+
[gr.inputs.Image(type="pil", label="Input")],
|
67 |
+
gr.outputs.Image(type="numpy", label="Output"),
|
68 |
+
title=title,
|
69 |
+
description=description,
|
70 |
+
article=article,
|
71 |
+
examples=[
|
72 |
+
["demo/sample_imgs/000000224200.jpg"],
|
73 |
+
["demo/sample_imgs/000000344909.jpg"]
|
74 |
+
]).launch()
|
75 |
+
|
configs/Base-RCNN-C4.yaml
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MODEL:
|
2 |
+
META_ARCHITECTURE: "GeneralizedRCNN"
|
3 |
+
RPN:
|
4 |
+
PRE_NMS_TOPK_TEST: 6000
|
5 |
+
POST_NMS_TOPK_TEST: 1000
|
6 |
+
ROI_HEADS:
|
7 |
+
NAME: "Res5ROIHeads"
|
8 |
+
DATASETS:
|
9 |
+
TRAIN: ("coco_2017_train",)
|
10 |
+
TEST: ("coco_2017_val",)
|
11 |
+
SOLVER:
|
12 |
+
IMS_PER_BATCH: 16
|
13 |
+
BASE_LR: 0.02
|
14 |
+
STEPS: (60000, 80000)
|
15 |
+
MAX_ITER: 90000
|
16 |
+
INPUT:
|
17 |
+
MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
|
18 |
+
VERSION: 2
|
configs/Base-RCNN-DilatedC5.yaml
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MODEL:
|
2 |
+
META_ARCHITECTURE: "GeneralizedRCNN"
|
3 |
+
RESNETS:
|
4 |
+
OUT_FEATURES: ["res5"]
|
5 |
+
RES5_DILATION: 2
|
6 |
+
RPN:
|
7 |
+
IN_FEATURES: ["res5"]
|
8 |
+
PRE_NMS_TOPK_TEST: 6000
|
9 |
+
POST_NMS_TOPK_TEST: 1000
|
10 |
+
ROI_HEADS:
|
11 |
+
NAME: "StandardROIHeads"
|
12 |
+
IN_FEATURES: ["res5"]
|
13 |
+
ROI_BOX_HEAD:
|
14 |
+
NAME: "FastRCNNConvFCHead"
|
15 |
+
NUM_FC: 2
|
16 |
+
POOLER_RESOLUTION: 7
|
17 |
+
ROI_MASK_HEAD:
|
18 |
+
NAME: "MaskRCNNConvUpsampleHead"
|
19 |
+
NUM_CONV: 4
|
20 |
+
POOLER_RESOLUTION: 14
|
21 |
+
DATASETS:
|
22 |
+
TRAIN: ("coco_2017_train",)
|
23 |
+
TEST: ("coco_2017_val",)
|
24 |
+
SOLVER:
|
25 |
+
IMS_PER_BATCH: 16
|
26 |
+
BASE_LR: 0.02
|
27 |
+
STEPS: (60000, 80000)
|
28 |
+
MAX_ITER: 90000
|
29 |
+
INPUT:
|
30 |
+
MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
|
31 |
+
VERSION: 2
|
configs/Base-RCNN-FPN-4gpu.yaml
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MODEL:
|
2 |
+
META_ARCHITECTURE: "GeneralizedRCNN"
|
3 |
+
BACKBONE:
|
4 |
+
NAME: "build_resnet_fpn_backbone"
|
5 |
+
RESNETS:
|
6 |
+
OUT_FEATURES: ["res2", "res3", "res4", "res5"]
|
7 |
+
FPN:
|
8 |
+
IN_FEATURES: ["res2", "res3", "res4", "res5"]
|
9 |
+
ANCHOR_GENERATOR:
|
10 |
+
SIZES: [[32], [64], [128], [256], [512]] # One size for each in feature map
|
11 |
+
ASPECT_RATIOS: [[0.5, 1.0, 2.0]] # Three aspect ratios (same for all in feature maps)
|
12 |
+
RPN:
|
13 |
+
IN_FEATURES: ["p2", "p3", "p4", "p5", "p6"]
|
14 |
+
PRE_NMS_TOPK_TRAIN: 2000 # Per FPN level
|
15 |
+
PRE_NMS_TOPK_TEST: 1000 # Per FPN level
|
16 |
+
# Detectron1 uses 2000 proposals per-batch,
|
17 |
+
# (See "modeling/rpn/rpn_outputs.py" for details of this legacy issue)
|
18 |
+
# which is approximately 1000 proposals per-image since the default batch size for FPN is 2.
|
19 |
+
POST_NMS_TOPK_TRAIN: 1000
|
20 |
+
POST_NMS_TOPK_TEST: 1000
|
21 |
+
ROI_HEADS:
|
22 |
+
NAME: "StandardROIHeads"
|
23 |
+
IN_FEATURES: ["p2", "p3", "p4", "p5"]
|
24 |
+
ROI_BOX_HEAD:
|
25 |
+
NAME: "FastRCNNConvFCHead"
|
26 |
+
NUM_FC: 2
|
27 |
+
POOLER_RESOLUTION: 7
|
28 |
+
ROI_MASK_HEAD:
|
29 |
+
NAME: "MaskRCNNConvUpsampleHead"
|
30 |
+
NUM_CONV: 4
|
31 |
+
POOLER_RESOLUTION: 14
|
32 |
+
DATASETS:
|
33 |
+
TRAIN: ("coco_2017_train",)
|
34 |
+
#TEST: ("coco_2017_val",)
|
35 |
+
#TEST: ("lvis_v0.5_val_cocofied",)
|
36 |
+
TEST: ("coco_2017_test-dev",)
|
37 |
+
SOLVER:
|
38 |
+
IMS_PER_BATCH: 16 #8 #16
|
39 |
+
BASE_LR: 0.02 # 0.02
|
40 |
+
STEPS: (60000, 80000)
|
41 |
+
MAX_ITER: 90000
|
42 |
+
INPUT:
|
43 |
+
MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
|
44 |
+
VERSION: 2
|
configs/Base-RCNN-FPN.yaml
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MODEL:
|
2 |
+
META_ARCHITECTURE: "GeneralizedRCNN"
|
3 |
+
BACKBONE:
|
4 |
+
NAME: "build_resnet_fpn_backbone"
|
5 |
+
RESNETS:
|
6 |
+
OUT_FEATURES: ["res2", "res3", "res4", "res5"]
|
7 |
+
FPN:
|
8 |
+
IN_FEATURES: ["res2", "res3", "res4", "res5"]
|
9 |
+
ANCHOR_GENERATOR:
|
10 |
+
SIZES: [[32], [64], [128], [256], [512]] # One size for each in feature map
|
11 |
+
ASPECT_RATIOS: [[0.5, 1.0, 2.0]] # Three aspect ratios (same for all in feature maps)
|
12 |
+
RPN:
|
13 |
+
IN_FEATURES: ["p2", "p3", "p4", "p5", "p6"]
|
14 |
+
PRE_NMS_TOPK_TRAIN: 2000 # Per FPN level
|
15 |
+
PRE_NMS_TOPK_TEST: 1000 # Per FPN level
|
16 |
+
# Detectron1 uses 2000 proposals per-batch,
|
17 |
+
# (See "modeling/rpn/rpn_outputs.py" for details of this legacy issue)
|
18 |
+
# which is approximately 1000 proposals per-image since the default batch size for FPN is 2.
|
19 |
+
POST_NMS_TOPK_TRAIN: 1000
|
20 |
+
POST_NMS_TOPK_TEST: 1000
|
21 |
+
ROI_HEADS:
|
22 |
+
NAME: "StandardROIHeads"
|
23 |
+
IN_FEATURES: ["p2", "p3", "p4", "p5"]
|
24 |
+
ROI_BOX_HEAD:
|
25 |
+
NAME: "FastRCNNConvFCHead"
|
26 |
+
NUM_FC: 2
|
27 |
+
POOLER_RESOLUTION: 7
|
28 |
+
ROI_MASK_HEAD:
|
29 |
+
NAME: "MaskRCNNConvUpsampleHead"
|
30 |
+
NUM_CONV: 4
|
31 |
+
POOLER_RESOLUTION: 14
|
32 |
+
DATASETS:
|
33 |
+
TRAIN: ("coco_2017_train",)
|
34 |
+
TEST: ("coco_2017_val",)
|
35 |
+
SOLVER:
|
36 |
+
IMS_PER_BATCH: 16 #16
|
37 |
+
BASE_LR: 0.02
|
38 |
+
STEPS: (60000, 80000)
|
39 |
+
MAX_ITER: 90000
|
40 |
+
INPUT:
|
41 |
+
MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
|
42 |
+
VERSION: 2
|
configs/Base-RetinaNet.yaml
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MODEL:
|
2 |
+
META_ARCHITECTURE: "RetinaNet"
|
3 |
+
BACKBONE:
|
4 |
+
NAME: "build_retinanet_resnet_fpn_backbone"
|
5 |
+
RESNETS:
|
6 |
+
OUT_FEATURES: ["res3", "res4", "res5"]
|
7 |
+
ANCHOR_GENERATOR:
|
8 |
+
SIZES: !!python/object/apply:eval ["[[x, x * 2**(1.0/3), x * 2**(2.0/3) ] for x in [32, 64, 128, 256, 512 ]]"]
|
9 |
+
FPN:
|
10 |
+
IN_FEATURES: ["res3", "res4", "res5"]
|
11 |
+
RETINANET:
|
12 |
+
IOU_THRESHOLDS: [0.4, 0.5]
|
13 |
+
IOU_LABELS: [0, -1, 1]
|
14 |
+
SMOOTH_L1_LOSS_BETA: 0.0
|
15 |
+
DATASETS:
|
16 |
+
TRAIN: ("coco_2017_train",)
|
17 |
+
TEST: ("coco_2017_val",)
|
18 |
+
SOLVER:
|
19 |
+
IMS_PER_BATCH: 16
|
20 |
+
BASE_LR: 0.01 # Note that RetinaNet uses a different default learning rate
|
21 |
+
STEPS: (60000, 80000)
|
22 |
+
MAX_ITER: 90000
|
23 |
+
INPUT:
|
24 |
+
MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
|
25 |
+
VERSION: 2
|
configs/COCO-Detection/fast_rcnn_R_50_FPN_1x.yaml
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "../Base-RCNN-FPN.yaml"
|
2 |
+
MODEL:
|
3 |
+
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
4 |
+
MASK_ON: False
|
5 |
+
LOAD_PROPOSALS: True
|
6 |
+
RESNETS:
|
7 |
+
DEPTH: 50
|
8 |
+
PROPOSAL_GENERATOR:
|
9 |
+
NAME: "PrecomputedProposals"
|
10 |
+
DATASETS:
|
11 |
+
TRAIN: ("coco_2017_train",)
|
12 |
+
PROPOSAL_FILES_TRAIN: ("detectron2://COCO-Detection/rpn_R_50_FPN_1x/137258492/coco_2017_train_box_proposals_21bc3a.pkl", )
|
13 |
+
TEST: ("coco_2017_val",)
|
14 |
+
PROPOSAL_FILES_TEST: ("detectron2://COCO-Detection/rpn_R_50_FPN_1x/137258492/coco_2017_val_box_proposals_ee0dad.pkl", )
|
15 |
+
DATALOADER:
|
16 |
+
# proposals are part of the dataset_dicts, and take a lot of RAM
|
17 |
+
NUM_WORKERS: 2
|
configs/COCO-Detection/faster_rcnn_R_101_C4_3x.yaml
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "../Base-RCNN-C4.yaml"
|
2 |
+
MODEL:
|
3 |
+
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
|
4 |
+
MASK_ON: False
|
5 |
+
RESNETS:
|
6 |
+
DEPTH: 101
|
7 |
+
SOLVER:
|
8 |
+
STEPS: (210000, 250000)
|
9 |
+
MAX_ITER: 270000
|
configs/COCO-Detection/faster_rcnn_R_101_DC5_3x.yaml
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "../Base-RCNN-DilatedC5.yaml"
|
2 |
+
MODEL:
|
3 |
+
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
|
4 |
+
MASK_ON: False
|
5 |
+
RESNETS:
|
6 |
+
DEPTH: 101
|
7 |
+
SOLVER:
|
8 |
+
STEPS: (210000, 250000)
|
9 |
+
MAX_ITER: 270000
|
configs/COCO-Detection/faster_rcnn_R_101_FPN_3x.yaml
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "../Base-RCNN-FPN.yaml"
|
2 |
+
MODEL:
|
3 |
+
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
|
4 |
+
MASK_ON: False
|
5 |
+
RESNETS:
|
6 |
+
DEPTH: 101
|
7 |
+
SOLVER:
|
8 |
+
STEPS: (210000, 250000)
|
9 |
+
MAX_ITER: 270000
|
configs/COCO-Detection/faster_rcnn_R_50_C4_1x.yaml
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "../Base-RCNN-C4.yaml"
|
2 |
+
MODEL:
|
3 |
+
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
4 |
+
MASK_ON: False
|
5 |
+
RESNETS:
|
6 |
+
DEPTH: 50
|
configs/COCO-Detection/faster_rcnn_R_50_C4_3x.yaml
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "../Base-RCNN-C4.yaml"
|
2 |
+
MODEL:
|
3 |
+
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
4 |
+
MASK_ON: False
|
5 |
+
RESNETS:
|
6 |
+
DEPTH: 50
|
7 |
+
SOLVER:
|
8 |
+
STEPS: (210000, 250000)
|
9 |
+
MAX_ITER: 270000
|
configs/COCO-Detection/faster_rcnn_R_50_DC5_1x.yaml
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "../Base-RCNN-DilatedC5.yaml"
|
2 |
+
MODEL:
|
3 |
+
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
4 |
+
MASK_ON: False
|
5 |
+
RESNETS:
|
6 |
+
DEPTH: 50
|
configs/COCO-Detection/faster_rcnn_R_50_DC5_3x.yaml
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "../Base-RCNN-DilatedC5.yaml"
|
2 |
+
MODEL:
|
3 |
+
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
4 |
+
MASK_ON: False
|
5 |
+
RESNETS:
|
6 |
+
DEPTH: 50
|
7 |
+
SOLVER:
|
8 |
+
STEPS: (210000, 250000)
|
9 |
+
MAX_ITER: 270000
|
configs/COCO-Detection/faster_rcnn_R_50_FPN_1x.yaml
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "../Base-RCNN-FPN.yaml"
|
2 |
+
MODEL:
|
3 |
+
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
4 |
+
MASK_ON: False
|
5 |
+
RESNETS:
|
6 |
+
DEPTH: 50
|
configs/COCO-Detection/faster_rcnn_R_50_FPN_3x.yaml
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "../Base-RCNN-FPN.yaml"
|
2 |
+
MODEL:
|
3 |
+
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
4 |
+
MASK_ON: False
|
5 |
+
RESNETS:
|
6 |
+
DEPTH: 50
|
7 |
+
SOLVER:
|
8 |
+
STEPS: (210000, 250000)
|
9 |
+
MAX_ITER: 270000
|
configs/COCO-Detection/faster_rcnn_X_101_32x8d_FPN_3x.yaml
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "../Base-RCNN-FPN.yaml"
|
2 |
+
MODEL:
|
3 |
+
MASK_ON: False
|
4 |
+
WEIGHTS: "detectron2://ImageNetPretrained/FAIR/X-101-32x8d.pkl"
|
5 |
+
PIXEL_STD: [57.375, 57.120, 58.395]
|
6 |
+
RESNETS:
|
7 |
+
STRIDE_IN_1X1: False # this is a C2 model
|
8 |
+
NUM_GROUPS: 32
|
9 |
+
WIDTH_PER_GROUP: 8
|
10 |
+
DEPTH: 101
|
11 |
+
SOLVER:
|
12 |
+
STEPS: (210000, 250000)
|
13 |
+
MAX_ITER: 270000
|
configs/COCO-Detection/retinanet_R_101_FPN_3x.yaml
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "../Base-RetinaNet.yaml"
|
2 |
+
MODEL:
|
3 |
+
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
|
4 |
+
RESNETS:
|
5 |
+
DEPTH: 101
|
6 |
+
SOLVER:
|
7 |
+
STEPS: (210000, 250000)
|
8 |
+
MAX_ITER: 270000
|
configs/COCO-Detection/retinanet_R_50_FPN_1x.py
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ..common.optim import SGD as optimizer
|
2 |
+
from ..common.coco_schedule import lr_multiplier_1x as lr_multiplier
|
3 |
+
from ..common.data.coco import dataloader
|
4 |
+
from ..common.models.retinanet import model
|
5 |
+
from ..common.train import train
|
6 |
+
|
7 |
+
dataloader.train.mapper.use_instance_mask = False
|
8 |
+
model.backbone.bottom_up.freeze_at = 2
|
9 |
+
optimizer.lr = 0.01
|
configs/COCO-Detection/retinanet_R_50_FPN_1x.yaml
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "../Base-RetinaNet.yaml"
|
2 |
+
MODEL:
|
3 |
+
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
4 |
+
RESNETS:
|
5 |
+
DEPTH: 50
|
configs/COCO-Detection/retinanet_R_50_FPN_3x.yaml
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "../Base-RetinaNet.yaml"
|
2 |
+
MODEL:
|
3 |
+
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
4 |
+
RESNETS:
|
5 |
+
DEPTH: 50
|
6 |
+
SOLVER:
|
7 |
+
STEPS: (210000, 250000)
|
8 |
+
MAX_ITER: 270000
|
configs/COCO-Detection/rpn_R_50_C4_1x.yaml
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "../Base-RCNN-C4.yaml"
|
2 |
+
MODEL:
|
3 |
+
META_ARCHITECTURE: "ProposalNetwork"
|
4 |
+
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
5 |
+
MASK_ON: False
|
6 |
+
RESNETS:
|
7 |
+
DEPTH: 50
|
8 |
+
RPN:
|
9 |
+
PRE_NMS_TOPK_TEST: 12000
|
10 |
+
POST_NMS_TOPK_TEST: 2000
|
configs/COCO-Detection/rpn_R_50_FPN_1x.yaml
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "../Base-RCNN-FPN.yaml"
|
2 |
+
MODEL:
|
3 |
+
META_ARCHITECTURE: "ProposalNetwork"
|
4 |
+
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
5 |
+
MASK_ON: False
|
6 |
+
RESNETS:
|
7 |
+
DEPTH: 50
|
8 |
+
RPN:
|
9 |
+
POST_NMS_TOPK_TEST: 2000
|
configs/COCO-InstanceSegmentation/.mask_rcnn_R_50_FPN_1x_4gpu.yaml.swp
ADDED
Binary file (12.3 kB). View file
|
|
configs/COCO-InstanceSegmentation/mask_rcnn_R_101_C4_3x.yaml
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "../Base-RCNN-C4.yaml"
|
2 |
+
MODEL:
|
3 |
+
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
|
4 |
+
MASK_ON: True
|
5 |
+
RESNETS:
|
6 |
+
DEPTH: 101
|
7 |
+
SOLVER:
|
8 |
+
STEPS: (210000, 250000)
|
9 |
+
MAX_ITER: 270000
|
configs/COCO-InstanceSegmentation/mask_rcnn_R_101_DC5_3x.yaml
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "../Base-RCNN-DilatedC5.yaml"
|
2 |
+
MODEL:
|
3 |
+
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
|
4 |
+
MASK_ON: True
|
5 |
+
RESNETS:
|
6 |
+
DEPTH: 101
|
7 |
+
SOLVER:
|
8 |
+
STEPS: (210000, 250000)
|
9 |
+
MAX_ITER: 270000
|
configs/COCO-InstanceSegmentation/mask_rcnn_R_101_FPN_3x.yaml
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "../Base-RCNN-FPN.yaml"
|
2 |
+
MODEL:
|
3 |
+
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
|
4 |
+
MASK_ON: True
|
5 |
+
RESNETS:
|
6 |
+
DEPTH: 101
|
7 |
+
SOLVER:
|
8 |
+
STEPS: (210000, 250000)
|
9 |
+
MAX_ITER: 270000
|
configs/COCO-InstanceSegmentation/mask_rcnn_R_101_FPN_3x_4gpu_transfiner.yaml
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "../Base-RCNN-FPN-4gpu.yaml"
|
2 |
+
MODEL:
|
3 |
+
WEIGHTS: "./init_weights/model_final_a3ec72.pkl"
|
4 |
+
MASK_ON: True
|
5 |
+
RESNETS:
|
6 |
+
DEPTH: 101
|
7 |
+
SOLVER:
|
8 |
+
STEPS: (210000, 250000)
|
9 |
+
MAX_ITER: 270000
|
configs/COCO-InstanceSegmentation/mask_rcnn_R_101_FPN_3x_4gpu_transfiner_deform.yaml
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "../Base-RCNN-FPN-4gpu.yaml"
|
2 |
+
MODEL:
|
3 |
+
WEIGHTS: "./init_weights/model_final_a3ec72.pkl"
|
4 |
+
MASK_ON: True
|
5 |
+
RESNETS:
|
6 |
+
DEPTH: 101
|
7 |
+
DEFORM_ON_PER_STAGE: [False, True, True, True] # on Res3,Res4,Res5
|
8 |
+
DEFORM_MODULATED: False
|
9 |
+
SOLVER:
|
10 |
+
STEPS: (210000, 250000)
|
11 |
+
MAX_ITER: 270000
|
configs/COCO-InstanceSegmentation/mask_rcnn_R_101_FPN_3x_4gpu_transfiner_lvis.yaml
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "../Base-RCNN-FPN-4gpu.yaml"
|
2 |
+
MODEL:
|
3 |
+
WEIGHTS: "./init_weights/model_final_a3ec72.pkl"
|
4 |
+
MASK_ON: True
|
5 |
+
RESNETS:
|
6 |
+
DEPTH: 101
|
7 |
+
SOLVER:
|
8 |
+
STEPS: (210000, 250000)
|
9 |
+
MAX_ITER: 270000
|
10 |
+
DATASETS:
|
11 |
+
TEST: ("lvis_v0.5_val_cocofied",)
|
12 |
+
|
configs/COCO-InstanceSegmentation/mask_rcnn_R_50_C4_1x.py
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ..common.train import train
|
2 |
+
from ..common.optim import SGD as optimizer
|
3 |
+
from ..common.coco_schedule import lr_multiplier_1x as lr_multiplier
|
4 |
+
from ..common.data.coco import dataloader
|
5 |
+
from ..common.models.mask_rcnn_c4 import model
|
6 |
+
|
7 |
+
model.backbone.freeze_at = 2
|
configs/COCO-InstanceSegmentation/mask_rcnn_R_50_C4_1x.yaml
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "../Base-RCNN-C4.yaml"
|
2 |
+
MODEL:
|
3 |
+
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
4 |
+
MASK_ON: True
|
5 |
+
RESNETS:
|
6 |
+
DEPTH: 50
|
configs/COCO-InstanceSegmentation/mask_rcnn_R_50_C4_3x.yaml
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "../Base-RCNN-C4.yaml"
|
2 |
+
MODEL:
|
3 |
+
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
4 |
+
MASK_ON: True
|
5 |
+
RESNETS:
|
6 |
+
DEPTH: 50
|
7 |
+
SOLVER:
|
8 |
+
STEPS: (210000, 250000)
|
9 |
+
MAX_ITER: 270000
|
configs/COCO-InstanceSegmentation/mask_rcnn_R_50_DC5_1x.yaml
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "../Base-RCNN-DilatedC5.yaml"
|
2 |
+
MODEL:
|
3 |
+
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
4 |
+
MASK_ON: True
|
5 |
+
RESNETS:
|
6 |
+
DEPTH: 50
|
configs/COCO-InstanceSegmentation/mask_rcnn_R_50_DC5_3x.yaml
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "../Base-RCNN-DilatedC5.yaml"
|
2 |
+
MODEL:
|
3 |
+
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
4 |
+
MASK_ON: True
|
5 |
+
RESNETS:
|
6 |
+
DEPTH: 50
|
7 |
+
SOLVER:
|
8 |
+
STEPS: (210000, 250000)
|
9 |
+
MAX_ITER: 270000
|
configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.py
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ..common.optim import SGD as optimizer
|
2 |
+
from ..common.coco_schedule import lr_multiplier_1x as lr_multiplier
|
3 |
+
from ..common.data.coco import dataloader
|
4 |
+
from ..common.models.mask_rcnn_fpn import model
|
5 |
+
from ..common.train import train
|
6 |
+
|
7 |
+
model.backbone.bottom_up.freeze_at = 2
|
configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "../Base-RCNN-FPN.yaml"
|
2 |
+
MODEL:
|
3 |
+
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
4 |
+
MASK_ON: True
|
5 |
+
RESNETS:
|
6 |
+
DEPTH: 50
|
configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x_4gpu.yaml
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "../Base-RCNN-FPN-4gpu.yaml"
|
2 |
+
MODEL:
|
3 |
+
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
4 |
+
MASK_ON: True
|
5 |
+
RESNETS:
|
6 |
+
DEPTH: 50
|
configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x_4gpu_transfiner.yaml
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "../Base-RCNN-FPN-4gpu.yaml"
|
2 |
+
MODEL:
|
3 |
+
WEIGHTS: "./init_weights/model_final_a54504.pkl"
|
4 |
+
MASK_ON: True
|
5 |
+
RESNETS:
|
6 |
+
DEPTH: 50
|
configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x_giou.yaml
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "../Base-RCNN-FPN.yaml"
|
2 |
+
MODEL:
|
3 |
+
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
4 |
+
MASK_ON: True
|
5 |
+
RESNETS:
|
6 |
+
DEPTH: 50
|
7 |
+
RPN:
|
8 |
+
BBOX_REG_LOSS_TYPE: "giou"
|
9 |
+
BBOX_REG_LOSS_WEIGHT: 2.0
|
10 |
+
ROI_BOX_HEAD:
|
11 |
+
BBOX_REG_LOSS_TYPE: "giou"
|
12 |
+
BBOX_REG_LOSS_WEIGHT: 10.0
|
configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "../Base-RCNN-FPN.yaml"
|
2 |
+
MODEL:
|
3 |
+
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
4 |
+
MASK_ON: True
|
5 |
+
RESNETS:
|
6 |
+
DEPTH: 50
|
7 |
+
SOLVER:
|
8 |
+
STEPS: (210000, 250000)
|
9 |
+
MAX_ITER: 270000
|
configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x_4gpu_transfiner.yaml
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "../Base-RCNN-FPN-4gpu.yaml"
|
2 |
+
MODEL:
|
3 |
+
WEIGHTS: "./init_weights/model_final_f10217.pkl"
|
4 |
+
MASK_ON: True
|
5 |
+
RESNETS:
|
6 |
+
DEPTH: 50
|
7 |
+
SOLVER:
|
8 |
+
STEPS: (210000, 250000)
|
9 |
+
MAX_ITER: 270000
|
configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x_4gpu_transfiner_deform.yaml
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "../Base-RCNN-FPN-4gpu.yaml"
|
2 |
+
MODEL:
|
3 |
+
WEIGHTS: "./init_weights/model_final_f10217.pkl"
|
4 |
+
MASK_ON: True
|
5 |
+
RESNETS:
|
6 |
+
DEPTH: 50
|
7 |
+
DEFORM_ON_PER_STAGE: [False, True, True, True] # on Res3,Res4,Res5
|
8 |
+
DEFORM_MODULATED: False
|
9 |
+
SOLVER:
|
10 |
+
STEPS: (210000, 250000)
|
11 |
+
MAX_ITER: 270000
|
configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x_4gpu_transfiner_lvis.yaml
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "../Base-RCNN-FPN-4gpu.yaml"
|
2 |
+
MODEL:
|
3 |
+
WEIGHTS: "./init_weights/model_final_f10217.pkl"
|
4 |
+
MASK_ON: True
|
5 |
+
RESNETS:
|
6 |
+
DEPTH: 50
|
7 |
+
SOLVER:
|
8 |
+
STEPS: (210000, 250000)
|
9 |
+
MAX_ITER: 270000
|
10 |
+
DATASETS:
|
11 |
+
TEST: ("lvis_v0.5_val_cocofied",)
|
12 |
+
|
configs/COCO-InstanceSegmentation/mask_rcnn_X_101_32x8d_FPN_3x.yaml
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "../Base-RCNN-FPN.yaml"
|
2 |
+
MODEL:
|
3 |
+
MASK_ON: True
|
4 |
+
WEIGHTS: "detectron2://ImageNetPretrained/FAIR/X-101-32x8d.pkl"
|
5 |
+
PIXEL_STD: [57.375, 57.120, 58.395]
|
6 |
+
RESNETS:
|
7 |
+
STRIDE_IN_1X1: False # this is a C2 model
|
8 |
+
NUM_GROUPS: 32
|
9 |
+
WIDTH_PER_GROUP: 8
|
10 |
+
DEPTH: 101
|
11 |
+
SOLVER:
|
12 |
+
STEPS: (210000, 250000)
|
13 |
+
MAX_ITER: 270000
|
configs/COCO-InstanceSegmentation/mask_rcnn_X_101_32x8d_FPN_3x_transfiner.yaml
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "../Base-RCNN-FPN-4gpu.yaml"
|
2 |
+
MODEL:
|
3 |
+
MASK_ON: True
|
4 |
+
WEIGHTS: "./init_weights/model_final_x101.pkl"
|
5 |
+
PIXEL_STD: [57.375, 57.120, 58.395]
|
6 |
+
RESNETS:
|
7 |
+
STRIDE_IN_1X1: False # this is a C2 model
|
8 |
+
NUM_GROUPS: 32
|
9 |
+
WIDTH_PER_GROUP: 8
|
10 |
+
DEPTH: 101
|
11 |
+
SOLVER:
|
12 |
+
STEPS: (210000, 250000)
|
13 |
+
MAX_ITER: 270000
|
configs/COCO-InstanceSegmentation/mask_rcnn_regnetx_4gf_dds_fpn_1x.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ..common.optim import SGD as optimizer
|
2 |
+
from ..common.coco_schedule import lr_multiplier_1x as lr_multiplier
|
3 |
+
from ..common.data.coco import dataloader
|
4 |
+
from ..common.models.mask_rcnn_fpn import model
|
5 |
+
from ..common.train import train
|
6 |
+
|
7 |
+
from detectron2.config import LazyCall as L
|
8 |
+
from detectron2.modeling.backbone import RegNet
|
9 |
+
from detectron2.modeling.backbone.regnet import SimpleStem, ResBottleneckBlock
|
10 |
+
|
11 |
+
|
12 |
+
# Replace default ResNet with RegNetX-4GF from the DDS paper. Config source:
|
13 |
+
# https://github.com/facebookresearch/pycls/blob/2c152a6e5d913e898cca4f0a758f41e6b976714d/configs/dds_baselines/regnetx/RegNetX-4.0GF_dds_8gpu.yaml#L4-L9 # noqa
|
14 |
+
model.backbone.bottom_up = L(RegNet)(
|
15 |
+
stem_class=SimpleStem,
|
16 |
+
stem_width=32,
|
17 |
+
block_class=ResBottleneckBlock,
|
18 |
+
depth=23,
|
19 |
+
w_a=38.65,
|
20 |
+
w_0=96,
|
21 |
+
w_m=2.43,
|
22 |
+
group_width=40,
|
23 |
+
freeze_at=2,
|
24 |
+
norm="FrozenBN",
|
25 |
+
out_features=["s1", "s2", "s3", "s4"],
|
26 |
+
)
|
27 |
+
model.pixel_std = [57.375, 57.120, 58.395]
|
28 |
+
|
29 |
+
optimizer.weight_decay = 5e-5
|
30 |
+
train.init_checkpoint = (
|
31 |
+
"https://dl.fbaipublicfiles.com/pycls/dds_baselines/160906383/RegNetX-4.0GF_dds_8gpu.pyth"
|
32 |
+
)
|
33 |
+
# RegNets benefit from enabling cudnn benchmark mode
|
34 |
+
train.cudnn_benchmark = True
|
configs/COCO-InstanceSegmentation/mask_rcnn_regnety_4gf_dds_fpn_1x.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ..common.optim import SGD as optimizer
|
2 |
+
from ..common.coco_schedule import lr_multiplier_1x as lr_multiplier
|
3 |
+
from ..common.data.coco import dataloader
|
4 |
+
from ..common.models.mask_rcnn_fpn import model
|
5 |
+
from ..common.train import train
|
6 |
+
|
7 |
+
from detectron2.config import LazyCall as L
|
8 |
+
from detectron2.modeling.backbone import RegNet
|
9 |
+
from detectron2.modeling.backbone.regnet import SimpleStem, ResBottleneckBlock
|
10 |
+
|
11 |
+
|
12 |
+
# Replace default ResNet with RegNetY-4GF from the DDS paper. Config source:
|
13 |
+
# https://github.com/facebookresearch/pycls/blob/2c152a6e5d913e898cca4f0a758f41e6b976714d/configs/dds_baselines/regnety/RegNetY-4.0GF_dds_8gpu.yaml#L4-L10 # noqa
|
14 |
+
model.backbone.bottom_up = L(RegNet)(
|
15 |
+
stem_class=SimpleStem,
|
16 |
+
stem_width=32,
|
17 |
+
block_class=ResBottleneckBlock,
|
18 |
+
depth=22,
|
19 |
+
w_a=31.41,
|
20 |
+
w_0=96,
|
21 |
+
w_m=2.24,
|
22 |
+
group_width=64,
|
23 |
+
se_ratio=0.25,
|
24 |
+
freeze_at=2,
|
25 |
+
norm="FrozenBN",
|
26 |
+
out_features=["s1", "s2", "s3", "s4"],
|
27 |
+
)
|
28 |
+
model.pixel_std = [57.375, 57.120, 58.395]
|
29 |
+
|
30 |
+
optimizer.weight_decay = 5e-5
|
31 |
+
train.init_checkpoint = (
|
32 |
+
"https://dl.fbaipublicfiles.com/pycls/dds_baselines/160906838/RegNetY-4.0GF_dds_8gpu.pyth"
|
33 |
+
)
|
34 |
+
# RegNets benefit from enabling cudnn benchmark mode
|
35 |
+
train.cudnn_benchmark = True
|
configs/COCO-Keypoints/Base-Keypoint-RCNN-FPN.yaml
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "../Base-RCNN-FPN.yaml"
|
2 |
+
MODEL:
|
3 |
+
KEYPOINT_ON: True
|
4 |
+
ROI_HEADS:
|
5 |
+
NUM_CLASSES: 1
|
6 |
+
ROI_BOX_HEAD:
|
7 |
+
SMOOTH_L1_BETA: 0.5 # Keypoint AP degrades (though box AP improves) when using plain L1 loss
|
8 |
+
RPN:
|
9 |
+
# Detectron1 uses 2000 proposals per-batch, but this option is per-image in detectron2.
|
10 |
+
# 1000 proposals per-image is found to hurt box AP.
|
11 |
+
# Therefore we increase it to 1500 per-image.
|
12 |
+
POST_NMS_TOPK_TRAIN: 1500
|
13 |
+
DATASETS:
|
14 |
+
TRAIN: ("keypoints_coco_2017_train",)
|
15 |
+
TEST: ("keypoints_coco_2017_val",)
|
configs/COCO-Keypoints/keypoint_rcnn_R_101_FPN_3x.yaml
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "Base-Keypoint-RCNN-FPN.yaml"
|
2 |
+
MODEL:
|
3 |
+
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
|
4 |
+
RESNETS:
|
5 |
+
DEPTH: 101
|
6 |
+
SOLVER:
|
7 |
+
STEPS: (210000, 250000)
|
8 |
+
MAX_ITER: 270000
|