Spaces:
Runtime error
Runtime error
# An example config to train a mmdetection model using detectron2. | |
from ..common.data.coco import dataloader | |
from ..common.coco_schedule import lr_multiplier_1x as lr_multiplier | |
from ..common.optim import SGD as optimizer | |
from ..common.train import train | |
from detectron2.modeling.mmdet_wrapper import MMDetDetector | |
from detectron2.config import LazyCall as L | |
model = L(MMDetDetector)( | |
detector=dict( | |
type="MaskRCNN", | |
pretrained="torchvision://resnet50", | |
backbone=dict( | |
type="ResNet", | |
depth=50, | |
num_stages=4, | |
out_indices=(0, 1, 2, 3), | |
frozen_stages=1, | |
norm_cfg=dict(type="BN", requires_grad=True), | |
norm_eval=True, | |
style="pytorch", | |
), | |
neck=dict(type="FPN", in_channels=[256, 512, 1024, 2048], out_channels=256, num_outs=5), | |
rpn_head=dict( | |
type="RPNHead", | |
in_channels=256, | |
feat_channels=256, | |
anchor_generator=dict( | |
type="AnchorGenerator", | |
scales=[8], | |
ratios=[0.5, 1.0, 2.0], | |
strides=[4, 8, 16, 32, 64], | |
), | |
bbox_coder=dict( | |
type="DeltaXYWHBBoxCoder", | |
target_means=[0.0, 0.0, 0.0, 0.0], | |
target_stds=[1.0, 1.0, 1.0, 1.0], | |
), | |
loss_cls=dict(type="CrossEntropyLoss", use_sigmoid=True, loss_weight=1.0), | |
loss_bbox=dict(type="L1Loss", loss_weight=1.0), | |
), | |
roi_head=dict( | |
type="StandardRoIHead", | |
bbox_roi_extractor=dict( | |
type="SingleRoIExtractor", | |
roi_layer=dict(type="RoIAlign", output_size=7, sampling_ratio=0), | |
out_channels=256, | |
featmap_strides=[4, 8, 16, 32], | |
), | |
bbox_head=dict( | |
type="Shared2FCBBoxHead", | |
in_channels=256, | |
fc_out_channels=1024, | |
roi_feat_size=7, | |
num_classes=80, | |
bbox_coder=dict( | |
type="DeltaXYWHBBoxCoder", | |
target_means=[0.0, 0.0, 0.0, 0.0], | |
target_stds=[0.1, 0.1, 0.2, 0.2], | |
), | |
reg_class_agnostic=False, | |
loss_cls=dict(type="CrossEntropyLoss", use_sigmoid=False, loss_weight=1.0), | |
loss_bbox=dict(type="L1Loss", loss_weight=1.0), | |
), | |
mask_roi_extractor=dict( | |
type="SingleRoIExtractor", | |
roi_layer=dict(type="RoIAlign", output_size=14, sampling_ratio=0), | |
out_channels=256, | |
featmap_strides=[4, 8, 16, 32], | |
), | |
mask_head=dict( | |
type="FCNMaskHead", | |
num_convs=4, | |
in_channels=256, | |
conv_out_channels=256, | |
num_classes=80, | |
loss_mask=dict(type="CrossEntropyLoss", use_mask=True, loss_weight=1.0), | |
), | |
), | |
# model training and testing settings | |
train_cfg=dict( | |
rpn=dict( | |
assigner=dict( | |
type="MaxIoUAssigner", | |
pos_iou_thr=0.7, | |
neg_iou_thr=0.3, | |
min_pos_iou=0.3, | |
match_low_quality=True, | |
ignore_iof_thr=-1, | |
), | |
sampler=dict( | |
type="RandomSampler", | |
num=256, | |
pos_fraction=0.5, | |
neg_pos_ub=-1, | |
add_gt_as_proposals=False, | |
), | |
allowed_border=-1, | |
pos_weight=-1, | |
debug=False, | |
), | |
rpn_proposal=dict( | |
nms_pre=2000, | |
max_per_img=1000, | |
nms=dict(type="nms", iou_threshold=0.7), | |
min_bbox_size=0, | |
), | |
rcnn=dict( | |
assigner=dict( | |
type="MaxIoUAssigner", | |
pos_iou_thr=0.5, | |
neg_iou_thr=0.5, | |
min_pos_iou=0.5, | |
match_low_quality=True, | |
ignore_iof_thr=-1, | |
), | |
sampler=dict( | |
type="RandomSampler", | |
num=512, | |
pos_fraction=0.25, | |
neg_pos_ub=-1, | |
add_gt_as_proposals=True, | |
), | |
mask_size=28, | |
pos_weight=-1, | |
debug=False, | |
), | |
), | |
test_cfg=dict( | |
rpn=dict( | |
nms_pre=1000, | |
max_per_img=1000, | |
nms=dict(type="nms", iou_threshold=0.7), | |
min_bbox_size=0, | |
), | |
rcnn=dict( | |
score_thr=0.05, | |
nms=dict(type="nms", iou_threshold=0.5), | |
max_per_img=100, | |
mask_thr_binary=0.5, | |
), | |
), | |
), | |
pixel_mean=[123.675, 116.280, 103.530], | |
pixel_std=[58.395, 57.120, 57.375], | |
) | |
dataloader.train.mapper.image_format = "RGB" # torchvision pretrained model | |
train.init_checkpoint = None # pretrained model is loaded inside backbone | |