Spaces:
Sleeping
Sleeping
# app.py | |
import os | |
import logging | |
import gradio as gr | |
import torch | |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline | |
# Embeddings 与 VectorStore 用新的分包 | |
from langchain_huggingface import HuggingFaceEmbeddings | |
from langchain_chroma import Chroma | |
# LLM 继续用 community 包里的 Pipeline | |
from langchain_community.llms import HuggingFacePipeline | |
from langchain.chains import RetrievalQA | |
from langchain.prompts import PromptTemplate | |
from build_index import main as build_index_if_needed # 确保 build_index.py 与 app.py 同目录 | |
logging.basicConfig(level=logging.INFO) | |
# ─── 配置 ───────────────────────────────────────────────────── | |
VECTOR_STORE_DIR = "./vector_store" | |
MODEL_NAME = "uer/gpt2-chinese-cluecorpussmall" | |
EMBEDDING_MODEL_NAME = "sentence-transformers/paraphrase-multilingual-mpnet-base-v2" | |
# 容器启动时自动构建向量库(如果 vector_store 目录为空) | |
if not os.path.exists(VECTOR_STORE_DIR) or not os.listdir(VECTOR_STORE_DIR): | |
logging.info("向量库不存在,启动自动构建……") | |
build_index_if_needed() | |
# ─── 1. 加载生成模型 ────────────────────────────────────────────── | |
logging.info("🔧 加载生成模型…") | |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True) | |
model = AutoModelForCausalLM.from_pretrained( | |
MODEL_NAME, | |
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, | |
device_map="auto", | |
) | |
gen_pipe = pipeline( | |
task="text-generation", | |
model=model, | |
tokenizer=tokenizer, | |
max_new_tokens=256, | |
temperature=0.5, | |
top_p=0.9, | |
do_sample=True, | |
trust_remote_code=True, | |
) | |
llm = HuggingFacePipeline(pipeline=gen_pipe) | |
logging.info("✅ 生成模型加载成功。") | |
# ─── 2. 加载向量库 ───────────────────────────────────────────── | |
logging.info("📚 加载向量库…") | |
embeddings = HuggingFaceEmbeddings(model_name=EMBEDDING_MODEL_NAME) | |
vectordb = Chroma(persist_directory=VECTOR_STORE_DIR, embedding_function=embeddings) | |
retriever = vectordb.as_retriever(search_kwargs={"k": 3}) | |
logging.info("✅ 向量库加载成功。") | |
# ─── 3. 自定义 Prompt ───────────────────────────────────────── | |
prompt_template = PromptTemplate.from_template( | |
"""你是一位专业的数学助教,请根据以下参考资料回答用户的问题。 | |
如果资料中没有相关内容,请直接回答“我不知道”或“资料中未提及”,不要编造答案。 | |
参考资料: | |
{context} | |
用户问题: | |
{question} | |
回答(只允许基于参考资料,不要编造): | |
""" | |
) | |
# ─── 4. 构建 RAG 问答链(map_reduce) ─────────────────────────── | |
qa_chain = RetrievalQA.from_chain_type( | |
llm=llm, | |
chain_type="map_reduce", # map_reduce 自动分段、避免超长 | |
retriever=retriever, | |
return_source_documents=True, | |
) | |
logging.info("✅ RAG 问答链(map_reduce)构建成功。") | |
# ─── 5. 业务函数 ─────────────────────────────────────────────── | |
def qa_fn(query: str): | |
if not query or not query.strip(): | |
return "❌ 请输入问题内容。" | |
try: | |
result = qa_chain({"query": query}) | |
except Exception as e: | |
logging.error(f"问答链运行出错:{e}") | |
return "抱歉,问答过程中出现错误,请稍后重试。" | |
answer = result.get("result", "").strip() | |
sources = result.get("source_documents", []) | |
if not answer: | |
return "📌 回答:未生成答案,请稍后再试。" | |
if not sources: | |
return f"📌 回答:{answer}\n\n(未检索到参考片段)" | |
# 拼接参考片段 | |
sources_text = "\n\n".join( | |
[f"【片段 {i+1}】\n{doc.page_content}" for i, doc in enumerate(sources)] | |
) | |
return f"📌 回答:{answer}\n\n📚 参考:\n{sources_text}" | |
# ─── 6. Gradio 界面 ───────────────────────────────────────────── | |
with gr.Blocks(title="智能学习助手") as demo: | |
gr.Markdown("## 📘 智能学习助手\n输入教材相关问题,例如:“什么是函数的定义域?”") | |
with gr.Row(): | |
query = gr.Textbox(label="问题", placeholder="请输入你的问题", lines=2) | |
answer = gr.Textbox(label="回答", lines=12) | |
gr.Button("提问").click(fn=qa_fn, inputs=query, outputs=answer) | |
gr.Markdown( | |
"---\n" | |
"模型:UER/GPT2-Chinese-ClueCorpus + Sentence-Transformers RAG (map_reduce) \n" | |
"由 Hugging Face Spaces 提供算力支持" | |
) | |
if __name__ == "__main__": | |
demo.launch() | |