ljy5946's picture
Update app.py
35634c4 verified
# app.py
import os
import logging
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
# Embeddings 与 VectorStore 用新的分包
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_chroma import Chroma
# LLM 继续用 community 包里的 Pipeline
from langchain_community.llms import HuggingFacePipeline
from langchain.chains import RetrievalQA
from langchain.prompts import PromptTemplate
from build_index import main as build_index_if_needed # 确保 build_index.py 与 app.py 同目录
logging.basicConfig(level=logging.INFO)
# ─── 配置 ─────────────────────────────────────────────────────
VECTOR_STORE_DIR = "./vector_store"
MODEL_NAME = "uer/gpt2-chinese-cluecorpussmall"
EMBEDDING_MODEL_NAME = "sentence-transformers/paraphrase-multilingual-mpnet-base-v2"
# 容器启动时自动构建向量库(如果 vector_store 目录为空)
if not os.path.exists(VECTOR_STORE_DIR) or not os.listdir(VECTOR_STORE_DIR):
logging.info("向量库不存在,启动自动构建……")
build_index_if_needed()
# ─── 1. 加载生成模型 ──────────────────────────────────────────────
logging.info("🔧 加载生成模型…")
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
device_map="auto",
)
gen_pipe = pipeline(
task="text-generation",
model=model,
tokenizer=tokenizer,
max_new_tokens=256,
temperature=0.5,
top_p=0.9,
do_sample=True,
trust_remote_code=True,
)
llm = HuggingFacePipeline(pipeline=gen_pipe)
logging.info("✅ 生成模型加载成功。")
# ─── 2. 加载向量库 ─────────────────────────────────────────────
logging.info("📚 加载向量库…")
embeddings = HuggingFaceEmbeddings(model_name=EMBEDDING_MODEL_NAME)
vectordb = Chroma(persist_directory=VECTOR_STORE_DIR, embedding_function=embeddings)
retriever = vectordb.as_retriever(search_kwargs={"k": 3})
logging.info("✅ 向量库加载成功。")
# ─── 3. 自定义 Prompt ─────────────────────────────────────────
prompt_template = PromptTemplate.from_template(
"""你是一位专业的数学助教,请根据以下参考资料回答用户的问题。
如果资料中没有相关内容,请直接回答“我不知道”或“资料中未提及”,不要编造答案。
参考资料:
{context}
用户问题:
{question}
回答(只允许基于参考资料,不要编造):
"""
)
# ─── 4. 构建 RAG 问答链(map_reduce) ───────────────────────────
qa_chain = RetrievalQA.from_chain_type(
llm=llm,
chain_type="map_reduce", # map_reduce 自动分段、避免超长
retriever=retriever,
return_source_documents=True,
)
logging.info("✅ RAG 问答链(map_reduce)构建成功。")
# ─── 5. 业务函数 ───────────────────────────────────────────────
def qa_fn(query: str):
if not query or not query.strip():
return "❌ 请输入问题内容。"
try:
result = qa_chain({"query": query})
except Exception as e:
logging.error(f"问答链运行出错:{e}")
return "抱歉,问答过程中出现错误,请稍后重试。"
answer = result.get("result", "").strip()
sources = result.get("source_documents", [])
if not answer:
return "📌 回答:未生成答案,请稍后再试。"
if not sources:
return f"📌 回答:{answer}\n\n(未检索到参考片段)"
# 拼接参考片段
sources_text = "\n\n".join(
[f"【片段 {i+1}】\n{doc.page_content}" for i, doc in enumerate(sources)]
)
return f"📌 回答:{answer}\n\n📚 参考:\n{sources_text}"
# ─── 6. Gradio 界面 ─────────────────────────────────────────────
with gr.Blocks(title="智能学习助手") as demo:
gr.Markdown("## 📘 智能学习助手\n输入教材相关问题,例如:“什么是函数的定义域?”")
with gr.Row():
query = gr.Textbox(label="问题", placeholder="请输入你的问题", lines=2)
answer = gr.Textbox(label="回答", lines=12)
gr.Button("提问").click(fn=qa_fn, inputs=query, outputs=answer)
gr.Markdown(
"---\n"
"模型:UER/GPT2-Chinese-ClueCorpus + Sentence-Transformers RAG (map_reduce) \n"
"由 Hugging Face Spaces 提供算力支持"
)
if __name__ == "__main__":
demo.launch()