Upload 7 files
Browse files- .env +1 -0
- Readme.md +38 -0
- app.py +30 -64
- courses.json +5 -0
- deepseek_client.py +28 -0
- knowledge.py +16 -0
- requirement.txt +2 -0
.env
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
DEEPSEEK_API_KEY=sk-be518c2c78dc49e688c125d9b761c244
|
Readme.md
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# 智能学习助手 Demo
|
2 |
+
|
3 |
+
**赛道标签**:`agent-demo-track`
|
4 |
+
|
5 |
+
## 项目简介
|
6 |
+
|
7 |
+
这是一个基于 Gradio + DeepSeek 打造的“智能学习助手”示例。用户可以:
|
8 |
+
- **课程知识点**:输入某门课程(如“C语言程序设计”),从本地 JSON 知识库快速返回摘要;
|
9 |
+
- **与 LLM 问答**:输入任意学习相关问题,由 DeepSeek 模型生成回答。
|
10 |
+
|
11 |
+
## 部署链接
|
12 |
+
|
13 |
+
Demo 地址:https://huggingface.co/spaces/your-username/my-llm-learning-assistant
|
14 |
+
|
15 |
+
## 使用说明
|
16 |
+
|
17 |
+
1. 点击“课程知识点”模式,输入课程名(必须与 `courses.json` 中的 key 一致)。
|
18 |
+
2. 切换到“与 LLM 问答”模式,输入对学习相关的任意问题,点击提交后,DeepSeek 模型会给出回答。
|
19 |
+
|
20 |
+
## 模型与技术栈
|
21 |
+
|
22 |
+
- **DeepSeek-V3** (`deepseek-chat`),通过 OpenAI SDK 调用,`openai.api_base` 设置为 `https://api.deepseek.com`。:contentReference[oaicite:7]{index=7}
|
23 |
+
- **Gradio**:快速部署交互界面。
|
24 |
+
|
25 |
+
## 运行环境
|
26 |
+
|
27 |
+
- Python 3.10+
|
28 |
+
- 依赖列表:见 `requirements.txt`
|
29 |
+
|
30 |
+
## 未来优化方向
|
31 |
+
|
32 |
+
- **本地知识库扩充**:将更多课程或章节信息以 JSON 形式补充进去,或接入学校图书馆 API 做实时检索。
|
33 |
+
- **多轮对话**:目前为逐次单轮问答,后续可以保留聊天上下文,支持多轮跟进提问。
|
34 |
+
- **自定义组件**:为下拉选择常见课程名或热门问题添加自动补全与联想功能。
|
35 |
+
|
36 |
+
## 视频演示
|
37 |
+
|
38 |
+
[在此粘贴你录制的 2 分钟 Demo 视频链接]
|
app.py
CHANGED
@@ -1,64 +1,30 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
):
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
messages,
|
32 |
-
max_tokens=max_tokens,
|
33 |
-
stream=True,
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
-
|
39 |
-
response += token
|
40 |
-
yield response
|
41 |
-
|
42 |
-
|
43 |
-
"""
|
44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
-
"""
|
46 |
-
demo = gr.ChatInterface(
|
47 |
-
respond,
|
48 |
-
additional_inputs=[
|
49 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
-
],
|
60 |
-
)
|
61 |
-
|
62 |
-
|
63 |
-
if __name__ == "__main__":
|
64 |
-
demo.launch()
|
|
|
1 |
+
# app.py
|
2 |
+
import gradio as gr
|
3 |
+
from knowledge import lookup_course
|
4 |
+
from deepseek_client import ask_deepseek
|
5 |
+
|
6 |
+
def student_assistant(user_input: str, mode: str) -> str:
|
7 |
+
user_input = user_input.strip()
|
8 |
+
if not user_input:
|
9 |
+
return "请输入课程名或问题。"
|
10 |
+
if mode == "课程知识点":
|
11 |
+
return lookup_course(user_input)
|
12 |
+
else:
|
13 |
+
return ask_deepseek(user_input)
|
14 |
+
|
15 |
+
with gr.Blocks() as demo:
|
16 |
+
gr.Markdown("# 智能学习助手 Demo\n输入课程名或问题,选择模式,获取答案。")
|
17 |
+
with gr.Row():
|
18 |
+
user_input = gr.Textbox(label="输入课程名或问题", placeholder="如:C语言程序设计", lines=1)
|
19 |
+
mode = gr.Radio(choices=["课程知识点", "与 LLM 问答"], label="模式选择", value="课程知识点")
|
20 |
+
output = gr.Textbox(label="输出结果", interactive=False)
|
21 |
+
btn = gr.Button("提交")
|
22 |
+
gr.Examples(
|
23 |
+
examples=[["C语言程序设计", "课程知识点"], ["什么是二叉树?", "与 LLM 问答"]],
|
24 |
+
inputs=[user_input, mode]
|
25 |
+
)
|
26 |
+
btn.click(student_assistant, inputs=[user_input, mode], outputs=output)
|
27 |
+
user_input.submit(student_assistant, inputs=[user_input, mode], outputs=output)
|
28 |
+
|
29 |
+
if __name__ == "__main__":
|
30 |
+
demo.launch(share=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
courses.json
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"C语言程序设计": "第1章:数据类型与运算符;第2章:顺序与分支结构;第3章:循环与函数;第4章:数组与指针;第5章:结构体与文件操作。",
|
3 |
+
"Web前端开发": "HTML 基础标签;CSS 布局与样式;JavaScript DOM 操作;前端框架概述;常见开发工具与调试技巧。",
|
4 |
+
"计算机科学导论": "计算机系统组成;操作系统基础;算法与数据结构概念;编程语言演进;人工智能概览。"
|
5 |
+
}
|
deepseek_client.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# deepseek_client.py
|
2 |
+
import os
|
3 |
+
from openai import OpenAI
|
4 |
+
from dotenv import load_dotenv
|
5 |
+
|
6 |
+
load_dotenv()
|
7 |
+
DEEPSEEK_API_KEY = os.getenv("DEEPSEEK_API_KEY")
|
8 |
+
if not DEEPSEEK_API_KEY:
|
9 |
+
raise RuntimeError("未检测到环境变量 DEEPSEEK_API_KEY,请先设置 DeepSeek 的 Key。")
|
10 |
+
|
11 |
+
deepseek_client = OpenAI(
|
12 |
+
api_key=DEEPSEEK_API_KEY,
|
13 |
+
base_url="https://api.deepseek.com"
|
14 |
+
)
|
15 |
+
|
16 |
+
def ask_deepseek(user_query: str,
|
17 |
+
system_prompt: str = "You are a helpful learning assistant.") -> str:
|
18 |
+
try:
|
19 |
+
response = deepseek_client.chat.completions.create(
|
20 |
+
model="deepseek-chat",
|
21 |
+
messages=[
|
22 |
+
{"role": "system", "content": system_prompt},
|
23 |
+
{"role": "user", "content": user_query}
|
24 |
+
]
|
25 |
+
)
|
26 |
+
return response.choices[0].message.content.strip()
|
27 |
+
except Exception as e:
|
28 |
+
return f"调用 DeepSeek API 时出错:{e}"
|
knowledge.py
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# knowledge.py
|
2 |
+
import json
|
3 |
+
import os
|
4 |
+
|
5 |
+
BASE_DIR = os.path.dirname(__file__)
|
6 |
+
COURSE_DB_PATH = os.path.join(BASE_DIR, "courses.json")
|
7 |
+
|
8 |
+
with open(COURSE_DB_PATH, "r", encoding="utf-8") as f:
|
9 |
+
COURSE_DB = json.load(f)
|
10 |
+
|
11 |
+
def lookup_course(course_name: str) -> str:
|
12 |
+
course_name = course_name.strip()
|
13 |
+
if course_name in COURSE_DB:
|
14 |
+
return COURSE_DB[course_name]
|
15 |
+
else:
|
16 |
+
return f"未在本地知识库中找到“{course_name}”,你可以输入其他课程名或使用 LLM 问答模式。"
|
requirement.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
openai
|