Spaces:
Runtime error
Runtime error
""" PyTorch ChatGLM model. """ | |
import math | |
import copy | |
import os | |
import warnings | |
import torch | |
import torch.utils.checkpoint | |
import torch.nn.functional as F | |
from torch import nn | |
from torch.nn import CrossEntropyLoss, LayerNorm | |
from torch.nn.utils import skip_init | |
from typing import Optional, Tuple, Union, List, Callable | |
from transformers.utils import ( | |
add_code_sample_docstrings, | |
add_start_docstrings, | |
add_start_docstrings_to_model_forward, | |
) | |
from transformers.modeling_outputs import ( | |
BaseModelOutputWithPast, | |
CausalLMOutputWithPast, | |
BaseModelOutputWithPastAndCrossAttentions, | |
) | |
from transformers.modeling_utils import PreTrainedModel | |
from transformers.utils import logging | |
from transformers.generation.logits_process import LogitsProcessor | |
from transformers.generation.utils import LogitsProcessorList, StoppingCriteriaList, GenerationConfig | |
from configuration_chatglm import ChatGLMConfig | |
# flags required to enable jit fusion kernels | |
torch._C._jit_set_profiling_mode(False) | |
torch._C._jit_set_profiling_executor(False) | |
torch._C._jit_override_can_fuse_on_cpu(True) | |
torch._C._jit_override_can_fuse_on_gpu(True) | |
logger = logging.get_logger(__name__) | |
_CHECKPOINT_FOR_DOC = "THUDM/ChatGLM-6B" | |
_CONFIG_FOR_DOC = "ChatGLM6BConfig" | |
CHATGLM_6B_PRETRAINED_MODEL_ARCHIVE_LIST = [ | |
"THUDM/chatglm-6b", | |
# See all ChatGLM-6B models at https://huggingface.co/models?filter=chatglm | |
] | |
class InvalidScoreLogitsProcessor(LogitsProcessor): | |
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor: | |
if torch.isnan(scores).any() or torch.isinf(scores).any(): | |
scores.zero_() | |
scores[..., 20005] = 1e5 | |
return scores | |
def load_tf_weights_in_chatglm_6b(model, config, tf_checkpoint_path): | |
"""Load tf checkpoints in a pytorch model.""" | |
try: | |
import re | |
import numpy as np | |
import tensorflow as tf | |
except ImportError: | |
logger.error( | |
"Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see " | |
"https://www.tensorflow.org/install/ for installation instructions." | |
) | |
raise | |
tf_path = os.path.abspath(tf_checkpoint_path) | |
logger.info(f"Converting TensorFlow checkpoint from {tf_path}") | |
# Load weights from TF model | |
init_vars = tf.train.list_variables(tf_path) | |
names = [] | |
arrays = [] | |
for name, shape in init_vars: | |
logger.info(f"Loading TF weight {name} with shape {shape}") | |
array = tf.train.load_variable(tf_path, name) | |
names.append(name) | |
arrays.append(array) | |
for name, array in zip(names, arrays): | |
name = name.split("/") | |
# adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v | |
# which are not required for using pretrained model | |
if any( | |
n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"] | |
for n in name | |
): | |
logger.info(f"Skipping {'/'.join(name)}") | |
continue | |
pointer = model | |
for m_name in name: | |
if re.fullmatch(r"[A-Za-z]+_\d+", m_name): | |
scope_names = re.split(r"_(\d+)", m_name) | |
else: | |
scope_names = [m_name] | |
if scope_names[0] == "kernel" or scope_names[0] == "gamma": | |
pointer = getattr(pointer, "weight") | |
elif scope_names[0] == "output_bias" or scope_names[0] == "beta": | |
pointer = getattr(pointer, "bias") | |
elif scope_names[0] == "output_weights": | |
pointer = getattr(pointer, "weight") | |
elif scope_names[0] == "squad": | |
pointer = getattr(pointer, "classifier") | |
else: | |
try: | |
pointer = getattr(pointer, scope_names[0]) | |
except AttributeError: | |
logger.info(f"Skipping {'/'.join(name)}") | |
continue | |
if len(scope_names) >= 2: | |
num = int(scope_names[1]) | |
pointer = pointer[num] | |
if m_name[-11:] == "_embeddings": | |
pointer = getattr(pointer, "weight") | |
elif m_name == "kernel": | |
array = np.transpose(array) | |
try: | |
assert ( | |
pointer.shape == array.shape | |
), f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched" | |
except AssertionError as e: | |
e.args += (pointer.shape, array.shape) | |
raise | |
logger.info(f"Initialize PyTorch weight {name}") | |
pointer.data = torch.from_numpy(array) | |
return model | |
def gelu_impl(x): | |
"""OpenAI's gelu implementation.""" | |
return 0.5 * x * (1.0 + torch.tanh(0.7978845608028654 * x * | |
(1.0 + 0.044715 * x * x))) | |
def gelu(x): | |
return gelu_impl(x) | |
class RotaryEmbedding(torch.nn.Module): | |
def __init__(self, dim, base=10000, precision=torch.half, learnable=False): | |
super().__init__() | |
inv_freq = 1. / (base ** (torch.arange(0, dim, 2).float() / dim)) | |
inv_freq = inv_freq.half() | |
self.learnable = learnable | |
if learnable: | |
self.inv_freq = torch.nn.Parameter(inv_freq) | |
self.max_seq_len_cached = None | |
else: | |
self.register_buffer('inv_freq', inv_freq) | |
self.max_seq_len_cached = None | |
self.cos_cached = None | |
self.sin_cached = None | |
self.precision = precision | |
def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, | |
error_msgs): | |
pass | |
def forward(self, x, seq_dim=1, seq_len=None): | |
if seq_len is None: | |
seq_len = x.shape[seq_dim] | |
if self.max_seq_len_cached is None or (seq_len > self.max_seq_len_cached): | |
self.max_seq_len_cached = None if self.learnable else seq_len | |
t = torch.arange(seq_len, device=x.device, dtype=self.inv_freq.dtype) | |
freqs = torch.einsum('i,j->ij', t, self.inv_freq) | |
# Different from paper, but it uses a different permutation in order to obtain the same calculation | |
emb = torch.cat((freqs, freqs), dim=-1).to(x.device) | |
if self.precision == torch.bfloat16: | |
emb = emb.float() | |
# [sx, 1 (b * np), hn] | |
cos_cached = emb.cos()[:, None, :] | |
sin_cached = emb.sin()[:, None, :] | |
if self.precision == torch.bfloat16: | |
cos_cached = cos_cached.bfloat16() | |
sin_cached = sin_cached.bfloat16() | |
if self.learnable: | |
return cos_cached, sin_cached | |
self.cos_cached, self.sin_cached = cos_cached, sin_cached | |
return self.cos_cached[:seq_len, ...], self.sin_cached[:seq_len, ...] | |
def rotate_half(x): | |
x1, x2 = x[..., :x.shape[-1] // 2], x[..., x.shape[-1] // 2:] | |
return torch.cat((-x2, x1), dim=x1.ndim - 1) # dim=-1 triggers a bug in earlier torch versions | |
def apply_rotary_pos_emb_index(q, k, cos, sin, position_id): | |
# position_id: [sq, b], q, k: [sq, b, np, hn], cos: [sq, 1, hn] -> [sq, b, 1, hn] | |
cos, sin = F.embedding(position_id, cos.squeeze(1)).unsqueeze(2), \ | |
F.embedding(position_id, sin.squeeze(1)).unsqueeze(2) | |
q, k = (q * cos) + (rotate_half(q) * sin), (k * cos) + (rotate_half(k) * sin) | |
return q, k | |
def attention_fn( | |
self, | |
query_layer, | |
key_layer, | |
value_layer, | |
attention_mask, | |
hidden_size_per_partition, | |
layer_id, | |
layer_past=None, | |
scaling_attention_score=True, | |
use_cache=False, | |
): | |
if layer_past is not None: | |
past_key, past_value = layer_past | |
key_layer = torch.cat((past_key, key_layer), dim=0) | |
value_layer = torch.cat((past_value, value_layer), dim=0) | |
# seqlen, batch, num_attention_heads, hidden_size_per_attention_head | |
seq_len, b, nh, hidden_size = key_layer.shape | |
if use_cache: | |
present = (key_layer, value_layer) | |
else: | |
present = None | |
query_key_layer_scaling_coeff = float(layer_id + 1) | |
if scaling_attention_score: | |
query_layer = query_layer / (math.sqrt(hidden_size) * query_key_layer_scaling_coeff) | |
# =================================== | |
# Raw attention scores. [b, np, s, s] | |
# =================================== | |
# [b, np, sq, sk] | |
output_size = (query_layer.size(1), query_layer.size(2), query_layer.size(0), key_layer.size(0)) | |
# [sq, b, np, hn] -> [sq, b * np, hn] | |
query_layer = query_layer.view(output_size[2], output_size[0] * output_size[1], -1) | |
# [sk, b, np, hn] -> [sk, b * np, hn] | |
key_layer = key_layer.view(output_size[3], output_size[0] * output_size[1], -1) | |
matmul_result = torch.empty( | |
output_size[0] * output_size[1], | |
output_size[2], | |
output_size[3], | |
dtype=query_layer.dtype, | |
device=query_layer.device, | |
) | |
matmul_result = torch.baddbmm( | |
matmul_result, | |
query_layer.transpose(0, 1), # [b * np, sq, hn] | |
key_layer.transpose(0, 1).transpose(1, 2), # [b * np, hn, sk] | |
beta=0.0, | |
alpha=1.0, | |
) | |
# change view to [b, np, sq, sk] | |
attention_scores = matmul_result.view(*output_size) | |
if self.scale_mask_softmax: | |
self.scale_mask_softmax.scale = query_key_layer_scaling_coeff | |
attention_probs = self.scale_mask_softmax(attention_scores, attention_mask.contiguous()) | |
else: | |
if not (attention_mask == 0).all(): | |
# if auto-regressive, skip | |
attention_scores.masked_fill_(attention_mask, -10000.0) | |
dtype = attention_scores.type() | |
attention_scores = attention_scores.float() | |
attention_scores = attention_scores * query_key_layer_scaling_coeff | |
attention_probs = F.softmax(attention_scores, dim=-1) | |
attention_probs = attention_probs.type(dtype) | |
# ========================= | |
# Context layer. [sq, b, hp] | |
# ========================= | |
# value_layer -> context layer. | |
# [sk, b, np, hn] --> [b, np, sq, hn] | |
# context layer shape: [b, np, sq, hn] | |
output_size = (value_layer.size(1), value_layer.size(2), query_layer.size(0), value_layer.size(3)) | |
# change view [sk, b * np, hn] | |
value_layer = value_layer.view(value_layer.size(0), output_size[0] * output_size[1], -1) | |
# change view [b * np, sq, sk] | |
attention_probs = attention_probs.view(output_size[0] * output_size[1], output_size[2], -1) | |
# matmul: [b * np, sq, hn] | |
context_layer = torch.bmm(attention_probs, value_layer.transpose(0, 1)) | |
# change view [b, np, sq, hn] | |
context_layer = context_layer.view(*output_size) | |
# [b, np, sq, hn] --> [sq, b, np, hn] | |
context_layer = context_layer.permute(2, 0, 1, 3).contiguous() | |
# [sq, b, np, hn] --> [sq, b, hp] | |
new_context_layer_shape = context_layer.size()[:-2] + (hidden_size_per_partition,) | |
context_layer = context_layer.view(*new_context_layer_shape) | |
outputs = (context_layer, present, attention_probs) | |
return outputs | |
class SelfAttention(torch.nn.Module): | |
def __init__(self, hidden_size, num_attention_heads, | |
layer_id, hidden_size_per_attention_head=None, bias=True, | |
params_dtype=torch.float, position_encoding_2d=True): | |
super(SelfAttention, self).__init__() | |
self.layer_id = layer_id | |
self.hidden_size = hidden_size | |
self.hidden_size_per_partition = hidden_size | |
self.num_attention_heads = num_attention_heads | |
self.num_attention_heads_per_partition = num_attention_heads | |
self.position_encoding_2d = position_encoding_2d | |
self.rotary_emb = RotaryEmbedding( | |
self.hidden_size // (self.num_attention_heads * 2) | |
if position_encoding_2d | |
else self.hidden_size // self.num_attention_heads, | |
base=10000, | |
precision=torch.half, | |
learnable=False, | |
) | |
self.scale_mask_softmax = None | |
if hidden_size_per_attention_head is None: | |
self.hidden_size_per_attention_head = hidden_size // num_attention_heads | |
else: | |
self.hidden_size_per_attention_head = hidden_size_per_attention_head | |
self.inner_hidden_size = num_attention_heads * self.hidden_size_per_attention_head | |
# Strided linear layer. | |
self.query_key_value = skip_init( | |
torch.nn.Linear, | |
hidden_size, | |
3 * self.inner_hidden_size, | |
bias=bias, | |
dtype=params_dtype, | |
) | |
self.dense = skip_init( | |
torch.nn.Linear, | |
self.inner_hidden_size, | |
hidden_size, | |
bias=bias, | |
dtype=params_dtype, | |
) | |
def attention_mask_func(attention_scores, attention_mask): | |
attention_scores.masked_fill_(attention_mask, -10000.0) | |
return attention_scores | |
def split_tensor_along_last_dim(self, tensor, num_partitions, | |
contiguous_split_chunks=False): | |
"""Split a tensor along its last dimension. | |
Arguments: | |
tensor: input tensor. | |
num_partitions: number of partitions to split the tensor | |
contiguous_split_chunks: If True, make each chunk contiguous | |
in memory. | |
""" | |
# Get the size and dimension. | |
last_dim = tensor.dim() - 1 | |
last_dim_size = tensor.size()[last_dim] // num_partitions | |
# Split. | |
tensor_list = torch.split(tensor, last_dim_size, dim=last_dim) | |
# Note: torch.split does not create contiguous tensors by default. | |
if contiguous_split_chunks: | |
return tuple(chunk.contiguous() for chunk in tensor_list) | |
return tensor_list | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
position_ids, | |
attention_mask: torch.Tensor, | |
layer_id, | |
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, | |
use_cache: bool = False, | |
output_attentions: bool = False, | |
): | |
""" | |
hidden_states: [seq_len, batch, hidden_size] | |
attention_mask: [(1, 1), seq_len, seq_len] | |
""" | |
# [seq_len, batch, 3 * hidden_size] | |
mixed_raw_layer = self.query_key_value(hidden_states) | |
# [seq_len, batch, 3 * hidden_size] --> [seq_len, batch, num_attention_heads, 3 * hidden_size_per_attention_head] | |
new_tensor_shape = mixed_raw_layer.size()[:-1] + ( | |
self.num_attention_heads_per_partition, | |
3 * self.hidden_size_per_attention_head, | |
) | |
mixed_raw_layer = mixed_raw_layer.view(*new_tensor_shape) | |
# [seq_len, batch, num_attention_heads, hidden_size_per_attention_head] | |
(query_layer, key_layer, value_layer) = self.split_tensor_along_last_dim(mixed_raw_layer, 3) | |
if self.position_encoding_2d: | |
q1, q2 = query_layer.chunk(2, dim=(query_layer.ndim - 1)) | |
k1, k2 = key_layer.chunk(2, dim=(key_layer.ndim - 1)) | |
cos, sin = self.rotary_emb(q1, seq_len=position_ids.max() + 1) | |
position_ids, block_position_ids = position_ids[:, 0, :].transpose(0, 1).contiguous(), \ | |
position_ids[:, 1, :].transpose(0, 1).contiguous() | |
q1, k1 = apply_rotary_pos_emb_index(q1, k1, cos, sin, position_ids) | |
q2, k2 = apply_rotary_pos_emb_index(q2, k2, cos, sin, block_position_ids) | |
query_layer = torch.concat([q1, q2], dim=(q1.ndim - 1)) | |
key_layer = torch.concat([k1, k2], dim=(k1.ndim - 1)) | |
else: | |
position_ids = position_ids.transpose(0, 1) | |
cos, sin = self.rotary_emb(value_layer, seq_len=position_ids.max() + 1) | |
# [seq_len, batch, num_attention_heads, hidden_size_per_attention_head] | |
query_layer, key_layer = apply_rotary_pos_emb_index(query_layer, key_layer, cos, sin, position_ids) | |
# [seq_len, batch, hidden_size] | |
context_layer, present, attention_probs = attention_fn( | |
self=self, | |
query_layer=query_layer, | |
key_layer=key_layer, | |
value_layer=value_layer, | |
attention_mask=attention_mask, | |
hidden_size_per_partition=self.hidden_size_per_partition, | |
layer_id=layer_id, | |
layer_past=layer_past, | |
use_cache=use_cache | |
) | |
output = self.dense(context_layer) | |
outputs = (output, present) | |
if output_attentions: | |
outputs += (attention_probs,) | |
return outputs # output, present, attention_probs | |
class GEGLU(torch.nn.Module): | |
def __init__(self): | |
super().__init__() | |
self.activation_fn = F.gelu | |
def forward(self, x): | |
# dim=-1 breaks in jit for pt<1.10 | |
x1, x2 = x.chunk(2, dim=(x.ndim - 1)) | |
return x1 * self.activation_fn(x2) | |
class GLU(torch.nn.Module): | |
def __init__(self, hidden_size, inner_hidden_size=None, | |
layer_id=None, bias=True, activation_func=gelu, params_dtype=torch.float): | |
super(GLU, self).__init__() | |
self.layer_id = layer_id | |
self.activation_func = activation_func | |
# Project to 4h. | |
self.hidden_size = hidden_size | |
if inner_hidden_size is None: | |
inner_hidden_size = 4 * hidden_size | |
self.inner_hidden_size = inner_hidden_size | |
self.dense_h_to_4h = skip_init( | |
torch.nn.Linear, | |
self.hidden_size, | |
self.inner_hidden_size, | |
bias=bias, | |
dtype=params_dtype, | |
) | |
# Project back to h. | |
self.dense_4h_to_h = skip_init( | |
torch.nn.Linear, | |
self.inner_hidden_size, | |
self.hidden_size, | |
bias=bias, | |
dtype=params_dtype, | |
) | |
def forward(self, hidden_states): | |
""" | |
hidden_states: [seq_len, batch, hidden_size] | |
""" | |
# [seq_len, batch, inner_hidden_size] | |
intermediate_parallel = self.dense_h_to_4h(hidden_states) | |
intermediate_parallel = self.activation_func(intermediate_parallel) | |
output = self.dense_4h_to_h(intermediate_parallel) | |
return output | |
class GLMBlock(torch.nn.Module): | |
def __init__( | |
self, | |
hidden_size, | |
num_attention_heads, | |
layernorm_epsilon, | |
layer_id, | |
inner_hidden_size=None, | |
hidden_size_per_attention_head=None, | |
layernorm=LayerNorm, | |
use_bias=True, | |
params_dtype=torch.float, | |
num_layers=28, | |
position_encoding_2d=True | |
): | |
super(GLMBlock, self).__init__() | |
# Set output layer initialization if not provided. | |
self.layer_id = layer_id | |
# Layernorm on the input data. | |
self.input_layernorm = layernorm(hidden_size, eps=layernorm_epsilon) | |
self.position_encoding_2d = position_encoding_2d | |
# Self attention. | |
self.attention = SelfAttention( | |
hidden_size, | |
num_attention_heads, | |
layer_id, | |
hidden_size_per_attention_head=hidden_size_per_attention_head, | |
bias=use_bias, | |
params_dtype=params_dtype, | |
position_encoding_2d=self.position_encoding_2d | |
) | |
# Layernorm on the input data. | |
self.post_attention_layernorm = layernorm(hidden_size, eps=layernorm_epsilon) | |
self.num_layers = num_layers | |
# GLU | |
self.mlp = GLU( | |
hidden_size, | |
inner_hidden_size=inner_hidden_size, | |
bias=use_bias, | |
layer_id=layer_id, | |
params_dtype=params_dtype, | |
) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
position_ids, | |
attention_mask: torch.Tensor, | |
layer_id, | |
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, | |
use_cache: bool = False, | |
output_attentions: bool = False, | |
): | |
""" | |
hidden_states: [seq_len, batch, hidden_size] | |
attention_mask: [(1, 1), seq_len, seq_len] | |
""" | |
# Layer norm at the begining of the transformer layer. | |
# [seq_len, batch, hidden_size] | |
attention_input = self.input_layernorm(hidden_states) | |
# Self attention. | |
attention_outputs = self.attention( | |
attention_input, | |
position_ids, | |
attention_mask=attention_mask, | |
layer_id=layer_id, | |
layer_past=layer_past, | |
use_cache=use_cache, | |
output_attentions=output_attentions | |
) | |
attention_output = attention_outputs[0] | |
outputs = attention_outputs[1:] | |
# Residual connection. | |
alpha = (2 * self.num_layers) ** 0.5 | |
hidden_states = attention_input * alpha + attention_output | |
mlp_input = self.post_attention_layernorm(hidden_states) | |
# MLP. | |
mlp_output = self.mlp(mlp_input) | |
# Second residual connection. | |
output = mlp_input * alpha + mlp_output | |
if use_cache: | |
outputs = (output,) + outputs | |
else: | |
outputs = (output,) + outputs[1:] | |
return outputs # hidden_states, present, attentions | |
class ChatGLMPreTrainedModel(PreTrainedModel): | |
""" | |
An abstract class to handle weights initialization and | |
a simple interface for downloading and loading pretrained models. | |
""" | |
is_parallelizable = True | |
supports_gradient_checkpointing = True | |
config_class = ChatGLMConfig | |
base_model_prefix = "transformer" | |
_no_split_modules = ["GLM6BBlock"] | |
def __init__(self, *inputs, **kwargs): | |
super().__init__(*inputs, **kwargs) | |
def _init_weights(self, module): | |
return | |
def _set_gradient_checkpointing(self, module, value=False): | |
if isinstance(module, (GLMBlock)): | |
module.gradient_checkpointing = value | |
CHATGLM_6B_START_DOCSTRING = r""" | |
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. | |
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general | |
usage and behavior. | |
Parameters: | |
config ([`~ChatGLM6BConfig`]): Model configuration class with all the parameters of the model. | |
Initializing with a config file does not load the weights associated with the model, only the configuration. | |
Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. | |
""" | |
CHATGLM_6B_INPUTS_DOCSTRING = r""" | |
Args: | |
input_ids (`torch.LongTensor` of shape `({0})`): | |
Indices of input sequence tokens in the vocabulary. | |
Indices can be obtained using [`ChatGLM6BTokenizer`]. | |
See [`PreTrainedTokenizer.encode`] and | |
[`PreTrainedTokenizer.__call__`] for details. | |
[What are input IDs?](../glossary#input-ids) | |
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): | |
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
[What are attention masks?](../glossary#attention-mask) | |
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): | |
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: | |
- 0 corresponds to a *sentence A* token, | |
- 1 corresponds to a *sentence B* token. | |
[What are token type IDs?](../glossary#token-type-ids) | |
position_ids (`torch.LongTensor` of shape `({0})`, *optional*): | |
Indices of positions of each input sequence tokens in the position embeddings. | |
Selected in the range `[0, config.max_position_embeddings - 1]`. | |
[What are position IDs?](../glossary#position-ids) | |
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): | |
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): | |
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. | |
This is useful if you want more control over how to convert *input_ids* indices into associated vectors | |
than the model's internal embedding lookup matrix. | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
""" | |
class ChatGLMModel(ChatGLMPreTrainedModel): | |
""" | |
The model can behave as an encoder (with only self-attention) as well | |
as a decoder, in which case a layer of cross-attention is added between | |
the self-attention layers, following the architecture described in [Attention is | |
all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, | |
Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin. | |
To behave as an decoder the model needs to be initialized with the | |
`is_decoder` argument of the configuration set to `True`. | |
To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` | |
argument and `add_cross_attention` set to `True`; an | |
`encoder_hidden_states` is then expected as an input to the forward pass. | |
""" | |
def __init__(self, config: ChatGLMConfig): | |
super().__init__(config) | |
# recording parameters | |
self.max_sequence_length = config.max_sequence_length | |
self.hidden_size = config.hidden_size | |
self.params_dtype = torch.half | |
self.num_attention_heads = config.num_attention_heads | |
self.vocab_size = config.vocab_size | |
self.num_layers = config.num_layers | |
self.layernorm_epsilon = config.layernorm_epsilon | |
self.inner_hidden_size = config.inner_hidden_size | |
self.hidden_size_per_attention_head = self.hidden_size // self.num_attention_heads | |
self.position_encoding_2d = config.position_encoding_2d | |
self.model_parallel = True | |
self.word_embeddings = skip_init( | |
torch.nn.Embedding, | |
num_embeddings=self.vocab_size, embedding_dim=self.hidden_size, | |
dtype=self.params_dtype | |
) | |
def get_layer(layer_id): | |
return GLMBlock( | |
self.hidden_size, | |
self.num_attention_heads, | |
self.layernorm_epsilon, | |
layer_id, | |
inner_hidden_size=self.inner_hidden_size, | |
hidden_size_per_attention_head=self.hidden_size_per_attention_head, | |
layernorm=LayerNorm, | |
use_bias=True, | |
params_dtype=self.params_dtype, | |
position_encoding_2d=self.position_encoding_2d, | |
) | |
self.layers = torch.nn.ModuleList( | |
[get_layer(layer_id) for layer_id in range(self.num_layers)] | |
) | |
# Final layer norm before output. | |
self.final_layernorm = LayerNorm(self.hidden_size, eps=self.layernorm_epsilon) | |
def get_input_embeddings(self): | |
return self.word_embeddings | |
def set_input_embeddings(self, new_embeddings: torch.Tensor): | |
self.word_embeddings = new_embeddings | |
def get_masks(seq, device): | |
context_length = seq.index(150004) + 1 | |
attention_mask = torch.ones((1, len(seq), len(seq)), device=device) | |
attention_mask.tril_() | |
attention_mask[..., :context_length - 1] = 1 | |
attention_mask.unsqueeze_(1) | |
attention_mask = (attention_mask < 0.5).bool() | |
return attention_mask | |
def get_position_ids(self, seq, mask_position, device, gmask=False): | |
context_length = len(seq) | |
if self.position_encoding_2d: | |
seq_length = seq.index(150004) | |
position_ids = torch.arange(context_length, dtype=torch.long, device=device) | |
if not gmask: | |
position_ids[seq_length:] = mask_position | |
block_position_ids = torch.cat(( | |
torch.zeros(seq_length, dtype=torch.long, device=device), | |
torch.arange(context_length - seq_length, dtype=torch.long, device=device) + 1 | |
)) | |
position_ids = torch.stack((position_ids, block_position_ids), dim=0) | |
else: | |
position_ids = torch.arange(context_length, dtype=torch.long, device=device) | |
if not gmask: | |
position_ids[context_length - 1:] = mask_position | |
position_ids = position_ids.unsqueeze(0) | |
return position_ids | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, | |
inputs_embeds: Optional[torch.LongTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPast]: | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
use_cache = use_cache if use_cache is not None else self.config.use_cache | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if input_ids is not None and inputs_embeds is not None: | |
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") | |
elif input_ids is not None: | |
batch_size, seq_length = input_ids.shape[:2] | |
elif inputs_embeds is not None: | |
batch_size, seq_length, _ = inputs_embeds.shape[:2] | |
else: | |
raise ValueError("You have to specify either input_ids or inputs_embeds") | |
if past_key_values is None: | |
past_key_values = tuple([None] * len(self.layers)) | |
MASK, gMASK = 150000, 150001 | |
mask_token = MASK if MASK in input_ids else gMASK | |
use_gmask = False if MASK in input_ids else gMASK | |
seq = input_ids[0].tolist() | |
mask_position = seq.index(mask_token) | |
if attention_mask is None: | |
attention_mask = self.get_masks( | |
seq=seq, | |
device=input_ids.device | |
) | |
if position_ids is None: | |
position_ids = self.get_position_ids( | |
seq=seq, | |
mask_position=mask_position, | |
device=input_ids.device, | |
gmask=use_gmask | |
) | |
if inputs_embeds is None: | |
inputs_embeds = self.word_embeddings(input_ids) | |
# [seq_len, batch, hidden_size] | |
hidden_states = inputs_embeds.transpose(0, 1) | |
presents = () if use_cache else None | |
all_self_attentions = () if output_attentions else None | |
all_hidden_states = () if output_hidden_states else None | |
seq_length_with_past = seq_length | |
past_key_values_length = 0 | |
if past_key_values[0] is not None: | |
past_key_values_length = past_key_values[0][0].shape[0] | |
seq_length_with_past = seq_length_with_past + past_key_values_length | |
if attention_mask is None: | |
attention_mask = torch.zeros(1, 1, device=input_ids.device).bool() | |
else: | |
attention_mask = attention_mask.to(input_ids.device) | |
for i, layer in enumerate(self.layers): | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
layer_ret = layer( | |
hidden_states, | |
position_ids=position_ids, | |
attention_mask=attention_mask, | |
layer_id=torch.tensor(i), | |
layer_past=past_key_values[i], | |
use_cache=use_cache, | |
output_attentions=output_attentions | |
) | |
hidden_states = layer_ret[0] | |
if use_cache: | |
presents = presents + (layer_ret[1],) | |
if output_attentions: | |
all_self_attentions = all_self_attentions + (layer_ret[2 if use_cache else 1],) | |
# Final layer norm. | |
hidden_states = self.final_layernorm(hidden_states) | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
if not return_dict: | |
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None) | |
return BaseModelOutputWithPast( | |
last_hidden_state=hidden_states, | |
past_key_values=presents, | |
hidden_states=all_hidden_states, | |
attentions=all_self_attentions, | |
) | |
class ChatGLMForConditionalGeneration(ChatGLMPreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
# self.hidden_size = config.hidden_size | |
# self.params_dtype = torch.half | |
# self.vocab_size = config.vocab_size | |
self.max_sequence_length = config.max_sequence_length | |
self.position_encoding_2d = config.position_encoding_2d | |
self.transformer = ChatGLMModel(config) | |
self.lm_head = skip_init( | |
nn.Linear, | |
config.hidden_size, | |
config.vocab_size, | |
bias=False, | |
dtype=torch.half | |
) | |
def get_output_embeddings(self): | |
return self.lm_head | |
def set_output_embeddings(self, new_embeddings): | |
self.lm_head = new_embeddings | |
def get_masks_and_position_ids(self, seq, mask_position, context_length, device, gmask=False): | |
attention_mask = torch.ones((1, context_length, context_length), device=device) | |
attention_mask.tril_() | |
attention_mask[..., :mask_position - 1] = 1 | |
attention_mask.unsqueeze_(1) | |
attention_mask = (attention_mask < 0.5).bool() | |
if self.position_encoding_2d: | |
seq_length = seq.index(150004) | |
position_ids = torch.arange(context_length, dtype=torch.long, device=device) | |
if not gmask: | |
position_ids[seq_length:] = mask_position | |
block_position_ids = torch.cat(( | |
torch.zeros(seq_length, dtype=torch.long, device=device), | |
torch.arange(context_length - seq_length, dtype=torch.long, device=device) + 1 | |
)) | |
position_ids = torch.stack((position_ids, block_position_ids), dim=0) | |
else: | |
position_ids = torch.arange(context_length, dtype=torch.long, device=device) | |
if not gmask: | |
position_ids[context_length - 1:] = mask_position | |
position_ids = position_ids.unsqueeze(0) | |
return attention_mask, position_ids | |
def prepare_inputs_for_generation( | |
self, | |
input_ids: torch.LongTensor, | |
past: Optional[torch.Tensor] = None, | |
past_key_values: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
**kwargs | |
) -> dict: | |
MASK, gMASK = 150000, 150001 | |
mask_token = MASK if MASK in input_ids else gMASK | |
use_gmask = False if MASK in input_ids else gMASK | |
seq = input_ids[0].tolist() | |
mask_position = seq.index(mask_token) | |
if mask_token not in seq: | |
raise ValueError("You have to add either [MASK] or [gMASK] in your input") | |
# only last token for input_ids if past is not None | |
if past is not None or past_key_values is not None: | |
context_length = seq.index(150004) | |
last_token = input_ids[:, -1].unsqueeze(-1) | |
if self.position_encoding_2d: | |
position_ids = torch.tensor([[[mask_position], [len(seq) - context_length]]], dtype=torch.long, | |
device=input_ids.device) | |
else: | |
position_ids = torch.tensor([[mask_position]], dtype=torch.long, device=input_ids.device) | |
if past is None: | |
past = past_key_values | |
return { | |
"input_ids": last_token, | |
"past_key_values": past, | |
"position_ids": position_ids, | |
} | |
else: | |
attention_mask, position_ids = self.get_masks_and_position_ids( | |
seq=seq, | |
mask_position=mask_position, | |
context_length=len(seq), | |
device=input_ids.device, | |
gmask=use_gmask | |
) | |
return { | |
"input_ids": input_ids, | |
"past_key_values": past, | |
"position_ids": position_ids, | |
"attention_mask": attention_mask | |
} | |
def forward( | |
self, | |
input_ids: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
past_key_values: Optional[Tuple[torch.FloatTensor]] = None, | |
inputs_embeds: Optional[torch.Tensor] = None, | |
labels: Optional[torch.Tensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
): | |
use_cache = use_cache if use_cache is not None else self.config.use_cache | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
transformer_outputs = self.transformer( | |
input_ids=input_ids, | |
position_ids=position_ids, | |
attention_mask=attention_mask, | |
past_key_values=past_key_values, | |
inputs_embeds=inputs_embeds, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
hidden_states = transformer_outputs[0] | |
lm_logits = self.lm_head(hidden_states).permute(1, 0, 2).contiguous() | |
loss = None | |
if labels is not None: | |
lm_logits = lm_logits.to(torch.float32) | |
# Shift so that tokens < n predict n | |
shift_logits = lm_logits[..., :-1, :].contiguous() | |
shift_labels = labels[..., 1:].contiguous() | |
# Flatten the tokens | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) | |
lm_logits = lm_logits.to(hidden_states.dtype) | |
loss = loss.to(hidden_states.dtype) | |
if not return_dict: | |
output = (lm_logits,) + transformer_outputs[1:] | |
return ((loss,) + output) if loss is not None else output | |
return CausalLMOutputWithPast( | |
loss=loss, | |
logits=lm_logits, | |
past_key_values=transformer_outputs.past_key_values, | |
hidden_states=transformer_outputs.hidden_states, | |
attentions=transformer_outputs.attentions, | |
) | |
def _reorder_cache( | |
past: Tuple[Tuple[torch.Tensor, torch.Tensor], ...], beam_idx: torch.LongTensor | |
) -> Tuple[Tuple[torch.Tensor, torch.Tensor], ...]: | |
""" | |
This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or | |
[`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct | |
beam_idx at every generation step. | |
Output shares the same memory storage as `past`. | |
""" | |
return tuple( | |
( | |
layer_past[0].index_select(1, beam_idx.to(layer_past[0].device)), | |
layer_past[1].index_select(1, beam_idx.to(layer_past[1].device)), | |
) | |
for layer_past in past | |
) | |
def chat(self, tokenizer, query: str, history: List[Tuple[str, str]] = None, max_length: int = 2048, num_beams=1, | |
do_sample=True, top_p=0.7, temperature=0.95, logits_processor=None, **kwargs): | |
if history is None: | |
history = [] | |
if logits_processor is None: | |
logits_processor = LogitsProcessorList() | |
logits_processor.append(InvalidScoreLogitsProcessor()) | |
gen_kwargs = {"max_length": max_length, "num_beams": num_beams, "do_sample": do_sample, "top_p": top_p, | |
"temperature": temperature, "logits_processor": logits_processor, **kwargs} | |
if not history: | |
prompt = query | |
else: | |
prompt = "" | |
for i, (old_query, response) in enumerate(history): | |
prompt += "[Round {}]\n问:{}\n答:{}\n".format(i, old_query, response) | |
prompt += "[Round {}]\n问:{}\n答:".format(len(history), query) | |
input_ids = tokenizer([prompt], return_tensors="pt", padding=True) | |
input_ids = input_ids.to(self.device) | |
outputs = self.generate(**input_ids, **gen_kwargs) | |
outputs = outputs.tolist()[0][len(input_ids["input_ids"][0]):] | |
response = tokenizer.decode(outputs) | |
response = response.strip() | |
response = response.replace("[[训练时间]]", "2023年") | |
history = history + [(query, response)] | |
return response, history | |
def stream_generate( | |
self, | |
input_ids, | |
generation_config: Optional[GenerationConfig] = None, | |
logits_processor: Optional[LogitsProcessorList] = None, | |
stopping_criteria: Optional[StoppingCriteriaList] = None, | |
prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None, | |
**kwargs, | |
): | |
batch_size, input_ids_seq_length = input_ids.shape[0], input_ids.shape[-1] | |
if generation_config is None: | |
generation_config = self.generation_config | |
generation_config = copy.deepcopy(generation_config) | |
model_kwargs = generation_config.update(**kwargs) | |
bos_token_id, eos_token_id = generation_config.bos_token_id, generation_config.eos_token_id | |
if isinstance(eos_token_id, int): | |
eos_token_id = [eos_token_id] | |
has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None | |
if has_default_max_length and generation_config.max_new_tokens is None: | |
warnings.warn( | |
f"Using `max_length`'s default ({generation_config.max_length}) to control the generation length. " | |
"This behaviour is deprecated and will be removed from the config in v5 of Transformers -- we" | |
" recommend using `max_new_tokens` to control the maximum length of the generation.", | |
UserWarning, | |
) | |
elif generation_config.max_new_tokens is not None: | |
generation_config.max_length = generation_config.max_new_tokens + input_ids_seq_length | |
if not has_default_max_length: | |
logger.warn( | |
f"Both `max_new_tokens` (={generation_config.max_new_tokens}) and `max_length`(=" | |
f"{generation_config.max_length}) seem to have been set. `max_new_tokens` will take precedence. " | |
"Please refer to the documentation for more information. " | |
"(https://huggingface.co/docs/transformers/main/en/main_classes/text_generation)", | |
UserWarning, | |
) | |
if input_ids_seq_length >= generation_config.max_length: | |
input_ids_string = "decoder_input_ids" if self.config.is_encoder_decoder else "input_ids" | |
logger.warning( | |
f"Input length of {input_ids_string} is {input_ids_seq_length}, but `max_length` is set to" | |
f" {generation_config.max_length}. This can lead to unexpected behavior. You should consider" | |
" increasing `max_new_tokens`." | |
) | |
# 2. Set generation parameters if not already defined | |
logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList() | |
stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList() | |
logits_processor = self._get_logits_processor( | |
generation_config=generation_config, | |
input_ids_seq_length=input_ids_seq_length, | |
encoder_input_ids=input_ids, | |
prefix_allowed_tokens_fn=prefix_allowed_tokens_fn, | |
logits_processor=logits_processor, | |
) | |
stopping_criteria = self._get_stopping_criteria( | |
generation_config=generation_config, stopping_criteria=stopping_criteria | |
) | |
logits_warper = self._get_logits_warper(generation_config) | |
unfinished_sequences = input_ids.new(input_ids.shape[0]).fill_(1) | |
scores = None | |
while True: | |
model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs) | |
# forward pass to get next token | |
outputs = self( | |
**model_inputs, | |
return_dict=True, | |
output_attentions=False, | |
output_hidden_states=False, | |
) | |
next_token_logits = outputs.logits[:, -1, :] | |
# pre-process distribution | |
next_token_scores = logits_processor(input_ids, next_token_logits) | |
next_token_scores = logits_warper(input_ids, next_token_scores) | |
# sample | |
probs = nn.functional.softmax(next_token_scores, dim=-1) | |
if generation_config.do_sample: | |
next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1) | |
else: | |
next_tokens = torch.argmax(probs, dim=-1) | |
# update generated ids, model inputs, and length for next step | |
input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1) | |
model_kwargs = self._update_model_kwargs_for_generation( | |
outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder | |
) | |
unfinished_sequences = unfinished_sequences.mul((sum(next_tokens != i for i in eos_token_id)).long()) | |
# stop when each sentence is finished, or if we exceed the maximum length | |
if unfinished_sequences.max() == 0 or stopping_criteria(input_ids, scores): | |
break | |
yield input_ids | |
def quantize(self, bits: int): | |
from .quantization import quantize | |
self.transformer = quantize(self.transformer, bits) | |
return self | |