Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright 3D-Speaker (https://github.com/alibaba-damo-academy/3D-Speaker). All Rights Reserved. | |
| # Licensed under the Apache License, Version 2.0 (http://www.apache.org/licenses/LICENSE-2.0) | |
| """ | |
| To further improve the short-duration feature extraction capability of ERes2Net, we expand the channel dimension | |
| within each stage. However, this modification also increases the number of model parameters and computational complexity. | |
| To alleviate this problem, we propose an improved ERes2NetV2 by pruning redundant structures, ultimately reducing | |
| both the model parameters and its computational cost. | |
| """ | |
| import torch | |
| import math | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| import pooling_layers as pooling_layers | |
| from fusion import AFF | |
| class ReLU(nn.Hardtanh): | |
| def __init__(self, inplace=False): | |
| super(ReLU, self).__init__(0, 20, inplace) | |
| def __repr__(self): | |
| inplace_str = 'inplace' if self.inplace else '' | |
| return self.__class__.__name__ + ' (' \ | |
| + inplace_str + ')' | |
| class BasicBlockERes2NetV2(nn.Module): | |
| def __init__(self, in_planes, planes, stride=1, baseWidth=26, scale=2, expansion=2): | |
| super(BasicBlockERes2NetV2, self).__init__() | |
| width = int(math.floor(planes*(baseWidth/64.0))) | |
| self.conv1 = nn.Conv2d(in_planes, width*scale, kernel_size=1, stride=stride, bias=False) | |
| self.bn1 = nn.BatchNorm2d(width*scale) | |
| self.nums = scale | |
| self.expansion = expansion | |
| convs=[] | |
| bns=[] | |
| for i in range(self.nums): | |
| convs.append(nn.Conv2d(width, width, kernel_size=3, padding=1, bias=False)) | |
| bns.append(nn.BatchNorm2d(width)) | |
| self.convs = nn.ModuleList(convs) | |
| self.bns = nn.ModuleList(bns) | |
| self.relu = ReLU(inplace=True) | |
| self.conv3 = nn.Conv2d(width*scale, planes*self.expansion, kernel_size=1, bias=False) | |
| self.bn3 = nn.BatchNorm2d(planes*self.expansion) | |
| self.shortcut = nn.Sequential() | |
| if stride != 1 or in_planes != self.expansion * planes: | |
| self.shortcut = nn.Sequential( | |
| nn.Conv2d(in_planes, | |
| self.expansion * planes, | |
| kernel_size=1, | |
| stride=stride, | |
| bias=False), | |
| nn.BatchNorm2d(self.expansion * planes)) | |
| self.stride = stride | |
| self.width = width | |
| self.scale = scale | |
| def forward(self, x): | |
| residual = x | |
| out = self.conv1(x) | |
| out = self.bn1(out) | |
| out = self.relu(out) | |
| spx = torch.split(out,self.width,1) | |
| for i in range(self.nums): | |
| if i==0: | |
| sp = spx[i] | |
| else: | |
| sp = sp + spx[i] | |
| sp = self.convs[i](sp) | |
| sp = self.relu(self.bns[i](sp)) | |
| if i==0: | |
| out = sp | |
| else: | |
| out = torch.cat((out,sp),1) | |
| out = self.conv3(out) | |
| out = self.bn3(out) | |
| residual = self.shortcut(x) | |
| out += residual | |
| out = self.relu(out) | |
| return out | |
| class BasicBlockERes2NetV2AFF(nn.Module): | |
| def __init__(self, in_planes, planes, stride=1, baseWidth=26, scale=2, expansion=2): | |
| super(BasicBlockERes2NetV2AFF, self).__init__() | |
| width = int(math.floor(planes*(baseWidth/64.0))) | |
| self.conv1 = nn.Conv2d(in_planes, width*scale, kernel_size=1, stride=stride, bias=False) | |
| self.bn1 = nn.BatchNorm2d(width*scale) | |
| self.nums = scale | |
| self.expansion = expansion | |
| convs=[] | |
| fuse_models=[] | |
| bns=[] | |
| for i in range(self.nums): | |
| convs.append(nn.Conv2d(width, width, kernel_size=3, padding=1, bias=False)) | |
| bns.append(nn.BatchNorm2d(width)) | |
| for j in range(self.nums - 1): | |
| fuse_models.append(AFF(channels=width, r=4)) | |
| self.convs = nn.ModuleList(convs) | |
| self.bns = nn.ModuleList(bns) | |
| self.fuse_models = nn.ModuleList(fuse_models) | |
| self.relu = ReLU(inplace=True) | |
| self.conv3 = nn.Conv2d(width*scale, planes*self.expansion, kernel_size=1, bias=False) | |
| self.bn3 = nn.BatchNorm2d(planes*self.expansion) | |
| self.shortcut = nn.Sequential() | |
| if stride != 1 or in_planes != self.expansion * planes: | |
| self.shortcut = nn.Sequential( | |
| nn.Conv2d(in_planes, | |
| self.expansion * planes, | |
| kernel_size=1, | |
| stride=stride, | |
| bias=False), | |
| nn.BatchNorm2d(self.expansion * planes)) | |
| self.stride = stride | |
| self.width = width | |
| self.scale = scale | |
| def forward(self, x): | |
| residual = x | |
| out = self.conv1(x) | |
| out = self.bn1(out) | |
| out = self.relu(out) | |
| spx = torch.split(out,self.width,1) | |
| for i in range(self.nums): | |
| if i==0: | |
| sp = spx[i] | |
| else: | |
| sp = self.fuse_models[i-1](sp, spx[i]) | |
| sp = self.convs[i](sp) | |
| sp = self.relu(self.bns[i](sp)) | |
| if i==0: | |
| out = sp | |
| else: | |
| out = torch.cat((out,sp),1) | |
| out = self.conv3(out) | |
| out = self.bn3(out) | |
| residual = self.shortcut(x) | |
| out += residual | |
| out = self.relu(out) | |
| return out | |
| class ERes2NetV2(nn.Module): | |
| def __init__(self, | |
| block=BasicBlockERes2NetV2, | |
| block_fuse=BasicBlockERes2NetV2AFF, | |
| num_blocks=[3, 4, 6, 3], | |
| m_channels=64, | |
| feat_dim=80, | |
| embedding_size=192, | |
| baseWidth=26, | |
| scale=2, | |
| expansion=2, | |
| pooling_func='TSTP', | |
| two_emb_layer=False): | |
| super(ERes2NetV2, self).__init__() | |
| self.in_planes = m_channels | |
| self.feat_dim = feat_dim | |
| self.embedding_size = embedding_size | |
| self.stats_dim = int(feat_dim / 8) * m_channels * 8 | |
| self.two_emb_layer = two_emb_layer | |
| self.baseWidth = baseWidth | |
| self.scale = scale | |
| self.expansion = expansion | |
| self.conv1 = nn.Conv2d(1, | |
| m_channels, | |
| kernel_size=3, | |
| stride=1, | |
| padding=1, | |
| bias=False) | |
| self.bn1 = nn.BatchNorm2d(m_channels) | |
| self.layer1 = self._make_layer(block, | |
| m_channels, | |
| num_blocks[0], | |
| stride=1) | |
| self.layer2 = self._make_layer(block, | |
| m_channels * 2, | |
| num_blocks[1], | |
| stride=2) | |
| self.layer3 = self._make_layer(block_fuse, | |
| m_channels * 4, | |
| num_blocks[2], | |
| stride=2) | |
| self.layer4 = self._make_layer(block_fuse, | |
| m_channels * 8, | |
| num_blocks[3], | |
| stride=2) | |
| # Downsampling module | |
| self.layer3_ds = nn.Conv2d(m_channels * 4 * self.expansion, m_channels * 8 * self.expansion, kernel_size=3, \ | |
| padding=1, stride=2, bias=False) | |
| # Bottom-up fusion module | |
| self.fuse34 = AFF(channels=m_channels * 8 * self.expansion, r=4) | |
| self.n_stats = 1 if pooling_func == 'TAP' or pooling_func == "TSDP" else 2 | |
| self.pool = getattr(pooling_layers, pooling_func)( | |
| in_dim=self.stats_dim * self.expansion) | |
| self.seg_1 = nn.Linear(self.stats_dim * self.expansion * self.n_stats, | |
| embedding_size) | |
| if self.two_emb_layer: | |
| self.seg_bn_1 = nn.BatchNorm1d(embedding_size, affine=False) | |
| self.seg_2 = nn.Linear(embedding_size, embedding_size) | |
| else: | |
| self.seg_bn_1 = nn.Identity() | |
| self.seg_2 = nn.Identity() | |
| def _make_layer(self, block, planes, num_blocks, stride): | |
| strides = [stride] + [1] * (num_blocks - 1) | |
| layers = [] | |
| for stride in strides: | |
| layers.append(block(self.in_planes, planes, stride, baseWidth=self.baseWidth, scale=self.scale, expansion=self.expansion)) | |
| self.in_planes = planes * self.expansion | |
| return nn.Sequential(*layers) | |
| def forward(self, x): | |
| x = x.permute(0, 2, 1) # (B,T,F) => (B,F,T) | |
| x = x.unsqueeze_(1) | |
| out = F.relu(self.bn1(self.conv1(x))) | |
| out1 = self.layer1(out) | |
| out2 = self.layer2(out1) | |
| out3 = self.layer3(out2) | |
| out4 = self.layer4(out3) | |
| out3_ds = self.layer3_ds(out3) | |
| fuse_out34 = self.fuse34(out4, out3_ds) | |
| stats = self.pool(fuse_out34) | |
| embed_a = self.seg_1(stats) | |
| if self.two_emb_layer: | |
| out = F.relu(embed_a) | |
| out = self.seg_bn_1(out) | |
| embed_b = self.seg_2(out) | |
| return embed_b | |
| else: | |
| return embed_a | |
| def forward3(self, x): | |
| x = x.permute(0, 2, 1) # (B,T,F) => (B,F,T) | |
| x = x.unsqueeze_(1) | |
| out = F.relu(self.bn1(self.conv1(x))) | |
| out1 = self.layer1(out) | |
| out2 = self.layer2(out1) | |
| out3 = self.layer3(out2) | |
| out4 = self.layer4(out3) | |
| out3_ds = self.layer3_ds(out3) | |
| fuse_out34 = self.fuse34(out4, out3_ds) | |
| # print(111111111,fuse_out34.shape)#111111111 torch.Size([16, 2048, 10, 72]) | |
| return fuse_out34.flatten(start_dim=1,end_dim=2).mean(-1) | |
| # stats = self.pool(fuse_out34) | |
| # | |
| # embed_a = self.seg_1(stats) | |
| # if self.two_emb_layer: | |
| # out = F.relu(embed_a) | |
| # out = self.seg_bn_1(out) | |
| # embed_b = self.seg_2(out) | |
| # return embed_b | |
| # else: | |
| # return embed_a | |
| if __name__ == '__main__': | |
| x = torch.randn(1, 300, 80) | |
| model = ERes2NetV2(feat_dim=80, embedding_size=192, m_channels=64, baseWidth=26, scale=2, expansion=2) | |
| model.eval() | |
| y = model(x) | |
| print(y.size()) | |
| macs, num_params = profile(model, inputs=(x, )) | |
| print("Params: {} M".format(num_params / 1e6)) # 17.86 M | |
| print("MACs: {} G".format(macs / 1e9)) # 12.69 G | |