Spaces:
Runtime error
Runtime error
# Copyright 2023 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import inspect | |
import warnings | |
from typing import Any, Callable, Dict, List, Optional, Tuple, Union | |
import torch | |
import torch.nn.functional as F | |
from packaging import version | |
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer | |
from diffusers.configuration_utils import FrozenDict | |
from diffusers.image_processor import VaeImageProcessor | |
from diffusers.loaders import FromSingleFileMixin, LoraLoaderMixin, TextualInversionLoaderMixin | |
from diffusers.models import AutoencoderKL, UNet2DConditionModel | |
from diffusers.schedulers import KarrasDiffusionSchedulers | |
from diffusers.utils import ( | |
deprecate, | |
is_accelerate_available, | |
is_accelerate_version, | |
logging, | |
randn_tensor, | |
replace_example_docstring, | |
) | |
from diffusers.pipelines.pipeline_utils import DiffusionPipeline | |
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput | |
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
EXAMPLE_DOC_STRING = """ | |
Examples: | |
```py | |
>>> import torch | |
>>> from diffusers import StableDiffusionPipeline | |
>>> pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16) | |
>>> pipe = pipe.to("cuda") | |
>>> prompt = "a photo of an astronaut riding a horse on mars" | |
>>> image = pipe(prompt).images[0] | |
``` | |
""" | |
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0): | |
""" | |
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and | |
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4 | |
""" | |
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True) | |
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True) | |
# rescale the results from guidance (fixes overexposure) | |
noise_pred_rescaled = noise_cfg * (std_text / std_cfg) | |
# mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images | |
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg | |
return noise_cfg | |
class StableDiffusionPipeline(DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin, FromSingleFileMixin): | |
r""" | |
Pipeline for text-to-image generation using Stable Diffusion. | |
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the | |
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) | |
In addition the pipeline inherits the following loading methods: | |
- *Textual-Inversion*: [`loaders.TextualInversionLoaderMixin.load_textual_inversion`] | |
- *LoRA*: [`loaders.LoraLoaderMixin.load_lora_weights`] | |
- *Ckpt*: [`loaders.FromCkptMixin.from_ckpt`] | |
as well as the following saving methods: | |
- *LoRA*: [`loaders.LoraLoaderMixin.save_lora_weights`] | |
Args: | |
vae ([`AutoencoderKL`]): | |
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. | |
text_encoder ([`CLIPTextModel`]): | |
Frozen text-encoder. Stable Diffusion uses the text portion of | |
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically | |
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. | |
tokenizer (`CLIPTokenizer`): | |
Tokenizer of class | |
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). | |
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. | |
scheduler ([`SchedulerMixin`]): | |
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of | |
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. | |
safety_checker ([`StableDiffusionSafetyChecker`]): | |
Classification module that estimates whether generated images could be considered offensive or harmful. | |
Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details. | |
feature_extractor ([`CLIPImageProcessor`]): | |
Model that extracts features from generated images to be used as inputs for the `safety_checker`. | |
""" | |
_optional_components = ["safety_checker", "feature_extractor"] | |
def __init__( | |
self, | |
vae: AutoencoderKL, | |
text_encoder: CLIPTextModel, | |
tokenizer: CLIPTokenizer, | |
unet: UNet2DConditionModel, | |
unet2: UNet2DConditionModel, | |
unet3: UNet2DConditionModel, | |
scheduler: KarrasDiffusionSchedulers, | |
safety_checker: StableDiffusionSafetyChecker, | |
feature_extractor: CLIPImageProcessor, | |
requires_safety_checker: bool = True, | |
): | |
super().__init__() | |
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1: | |
deprecation_message = ( | |
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`" | |
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure " | |
"to update the config accordingly as leaving `steps_offset` might led to incorrect results" | |
" in future versions. If you have downloaded this checkpoint from the Hugging Face Hub," | |
" it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`" | |
" file" | |
) | |
deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False) | |
new_config = dict(scheduler.config) | |
new_config["steps_offset"] = 1 | |
scheduler._internal_dict = FrozenDict(new_config) | |
if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True: | |
deprecation_message = ( | |
f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`." | |
" `clip_sample` should be set to False in the configuration file. Please make sure to update the" | |
" config accordingly as not setting `clip_sample` in the config might lead to incorrect results in" | |
" future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very" | |
" nice if you could open a Pull request for the `scheduler/scheduler_config.json` file" | |
) | |
deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False) | |
new_config = dict(scheduler.config) | |
new_config["clip_sample"] = False | |
scheduler._internal_dict = FrozenDict(new_config) | |
if safety_checker is None and requires_safety_checker: | |
logger.warning( | |
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" | |
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" | |
" results in services or applications open to the public. Both the diffusers team and Hugging Face" | |
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" | |
" it only for use-cases that involve analyzing network behavior or auditing its results. For more" | |
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." | |
) | |
if safety_checker is not None and feature_extractor is None: | |
raise ValueError( | |
"Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety" | |
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead." | |
) | |
is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse( | |
version.parse(unet.config._diffusers_version).base_version | |
) < version.parse("0.9.0.dev0") | |
is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64 | |
if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64: | |
deprecation_message = ( | |
"The configuration file of the unet has set the default `sample_size` to smaller than" | |
" 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the" | |
" following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-" | |
" CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5" | |
" \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the" | |
" configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`" | |
" in the config might lead to incorrect results in future versions. If you have downloaded this" | |
" checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for" | |
" the `unet/config.json` file" | |
) | |
deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False) | |
new_config = dict(unet.config) | |
new_config["sample_size"] = 64 | |
unet._internal_dict = FrozenDict(new_config) | |
new_config = dict(unet2.config) | |
new_config["sample_size"] = 64 | |
unet2._internal_dict = FrozenDict(new_config) | |
new_config = dict(unet3.config) | |
new_config["sample_size"] = 64 | |
unet3._internal_dict = FrozenDict(new_config) | |
# new_config = dict(unet4.config) | |
# new_config["sample_size"] = 64 | |
# unet4._internal_dict = FrozenDict(new_config) | |
self.register_modules( | |
vae=vae, | |
text_encoder=text_encoder, | |
tokenizer=tokenizer, | |
unet=unet, | |
unet2=unet2, | |
unet3=unet3, | |
scheduler=scheduler, | |
safety_checker=safety_checker, | |
feature_extractor=feature_extractor, | |
) | |
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) | |
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) | |
self.register_to_config(requires_safety_checker=requires_safety_checker) | |
def enable_vae_slicing(self): | |
r""" | |
Enable sliced VAE decoding. | |
When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several | |
steps. This is useful to save some memory and allow larger batch sizes. | |
""" | |
self.vae.enable_slicing() | |
def disable_vae_slicing(self): | |
r""" | |
Disable sliced VAE decoding. If `enable_vae_slicing` was previously invoked, this method will go back to | |
computing decoding in one step. | |
""" | |
self.vae.disable_slicing() | |
def enable_vae_tiling(self): | |
r""" | |
Enable tiled VAE decoding. | |
When this option is enabled, the VAE will split the input tensor into tiles to compute decoding and encoding in | |
several steps. This is useful to save a large amount of memory and to allow the processing of larger images. | |
""" | |
self.vae.enable_tiling() | |
def disable_vae_tiling(self): | |
r""" | |
Disable tiled VAE decoding. If `enable_vae_tiling` was previously invoked, this method will go back to | |
computing decoding in one step. | |
""" | |
self.vae.disable_tiling() | |
def enable_sequential_cpu_offload(self, gpu_id=0): | |
r""" | |
Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet, | |
text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a | |
`torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called. | |
Note that offloading happens on a submodule basis. Memory savings are higher than with | |
`enable_model_cpu_offload`, but performance is lower. | |
""" | |
if is_accelerate_available() and is_accelerate_version(">=", "0.14.0"): | |
from accelerate import cpu_offload | |
else: | |
raise ImportError("`enable_sequential_cpu_offload` requires `accelerate v0.14.0` or higher") | |
device = torch.device(f"cuda:{gpu_id}") | |
if self.device.type != "cpu": | |
self.to("cpu", silence_dtype_warnings=True) | |
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) | |
for cpu_offloaded_model in [self.unet, self.unet2, self.unet3, self.text_encoder, self.vae]: | |
cpu_offload(cpu_offloaded_model, device) | |
if self.safety_checker is not None: | |
cpu_offload(self.safety_checker, execution_device=device, offload_buffers=True) | |
def enable_model_cpu_offload(self, gpu_id=0): | |
r""" | |
Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared | |
to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward` | |
method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with | |
`enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`. | |
""" | |
if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"): | |
from accelerate import cpu_offload_with_hook | |
else: | |
raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.") | |
device = torch.device(f"cuda:{gpu_id}") | |
if self.device.type != "cpu": | |
self.to("cpu", silence_dtype_warnings=True) | |
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) | |
hook = None | |
for cpu_offloaded_model in [self.text_encoder, self.unet, self.unet2, self.unet3, self.vae]: | |
_, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook) | |
if self.safety_checker is not None: | |
_, hook = cpu_offload_with_hook(self.safety_checker, device, prev_module_hook=hook) | |
# We'll offload the last model manually. | |
self.final_offload_hook = hook | |
def _execution_device(self): | |
r""" | |
Returns the device on which the pipeline's models will be executed. After calling | |
`pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module | |
hooks. | |
""" | |
if not hasattr(self.unet, "_hf_hook"): | |
return self.device | |
for module in self.unet.modules(): | |
if ( | |
hasattr(module, "_hf_hook") | |
and hasattr(module._hf_hook, "execution_device") | |
and module._hf_hook.execution_device is not None | |
): | |
return torch.device(module._hf_hook.execution_device) | |
return self.device | |
def _encode_prompt( | |
self, | |
prompt, | |
device, | |
num_images_per_prompt, | |
do_classifier_free_guidance, | |
negative_prompt=None, | |
prompt_embeds: Optional[torch.FloatTensor] = None, | |
negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
lora_scale: Optional[float] = None, | |
): | |
r""" | |
Encodes the prompt into text encoder hidden states. | |
Args: | |
prompt (`str` or `List[str]`, *optional*): | |
prompt to be encoded | |
device: (`torch.device`): | |
torch device | |
num_images_per_prompt (`int`): | |
number of images that should be generated per prompt | |
do_classifier_free_guidance (`bool`): | |
whether to use classifier free guidance or not | |
negative_prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | |
less than `1`). | |
prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
provided, text embeddings will be generated from `prompt` input argument. | |
negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | |
argument. | |
lora_scale (`float`, *optional*): | |
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. | |
""" | |
# set lora scale so that monkey patched LoRA | |
# function of text encoder can correctly access it | |
if lora_scale is not None and isinstance(self, LoraLoaderMixin): | |
self._lora_scale = lora_scale | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
if prompt_embeds is None: | |
# textual inversion: procecss multi-vector tokens if necessary | |
if isinstance(self, TextualInversionLoaderMixin): | |
prompt = self.maybe_convert_prompt(prompt, self.tokenizer) | |
text_inputs = self.tokenizer( | |
prompt, | |
padding="max_length", | |
max_length=self.tokenizer.model_max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
text_input_ids = text_inputs.input_ids | |
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids | |
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( | |
text_input_ids, untruncated_ids | |
): | |
removed_text = self.tokenizer.batch_decode( | |
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] | |
) | |
logger.warning( | |
"The following part of your input was truncated because CLIP can only handle sequences up to" | |
f" {self.tokenizer.model_max_length} tokens: {removed_text}" | |
) | |
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | |
attention_mask = text_inputs.attention_mask.to(device) | |
else: | |
attention_mask = None | |
prompt_embeds = self.text_encoder( | |
text_input_ids.to(device), | |
attention_mask=attention_mask, | |
) | |
prompt_embeds = prompt_embeds[0] | |
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) | |
bs_embed, seq_len, _ = prompt_embeds.shape | |
# duplicate text embeddings for each generation per prompt, using mps friendly method | |
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) | |
# get unconditional embeddings for classifier free guidance | |
if do_classifier_free_guidance and negative_prompt_embeds is None: | |
uncond_tokens: List[str] | |
if negative_prompt is None: | |
uncond_tokens = [""] * batch_size | |
elif prompt is not None and type(prompt) is not type(negative_prompt): | |
raise TypeError( | |
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | |
f" {type(prompt)}." | |
) | |
elif isinstance(negative_prompt, str): | |
uncond_tokens = [negative_prompt] | |
elif batch_size != len(negative_prompt): | |
raise ValueError( | |
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | |
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | |
" the batch size of `prompt`." | |
) | |
else: | |
uncond_tokens = negative_prompt | |
# textual inversion: procecss multi-vector tokens if necessary | |
if isinstance(self, TextualInversionLoaderMixin): | |
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) | |
max_length = prompt_embeds.shape[1] | |
uncond_input = self.tokenizer( | |
uncond_tokens, | |
padding="max_length", | |
max_length=max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | |
attention_mask = uncond_input.attention_mask.to(device) | |
else: | |
attention_mask = None | |
negative_prompt_embeds = self.text_encoder( | |
uncond_input.input_ids.to(device), | |
attention_mask=attention_mask, | |
) | |
negative_prompt_embeds = negative_prompt_embeds[0] | |
if do_classifier_free_guidance: | |
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method | |
seq_len = negative_prompt_embeds.shape[1] | |
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) | |
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) | |
# For classifier free guidance, we need to do two forward passes. | |
# Here we concatenate the unconditional and text embeddings into a single batch | |
# to avoid doing two forward passes | |
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) | |
return prompt_embeds | |
def run_safety_checker(self, image, device, dtype): | |
if self.safety_checker is None: | |
has_nsfw_concept = None | |
else: | |
if torch.is_tensor(image): | |
feature_extractor_input = self.image_processor.postprocess(image, output_type="pil") | |
else: | |
feature_extractor_input = self.image_processor.numpy_to_pil(image) | |
safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device) | |
image, has_nsfw_concept = self.safety_checker( | |
images=image, clip_input=safety_checker_input.pixel_values.to(dtype) | |
) | |
return image, has_nsfw_concept | |
def decode_latents(self, latents): | |
warnings.warn( | |
"The decode_latents method is deprecated and will be removed in a future version. Please" | |
" use VaeImageProcessor instead", | |
FutureWarning, | |
) | |
latents = 1 / self.vae.config.scaling_factor * latents | |
image = self.vae.decode(latents, return_dict=False)[0] | |
image = (image / 2 + 0.5).clamp(0, 1) | |
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 | |
image = image.cpu().permute(0, 2, 3, 1).float().numpy() | |
return image | |
def prepare_extra_step_kwargs(self, generator, eta): | |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
# eta (Ξ·) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
# eta corresponds to Ξ· in DDIM paper: https://arxiv.org/abs/2010.02502 | |
# and should be between [0, 1] | |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
extra_step_kwargs = {} | |
if accepts_eta: | |
extra_step_kwargs["eta"] = eta | |
# check if the scheduler accepts generator | |
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
if accepts_generator: | |
extra_step_kwargs["generator"] = generator | |
return extra_step_kwargs | |
def check_inputs( | |
self, | |
prompt, | |
height, | |
width, | |
callback_steps, | |
negative_prompt=None, | |
prompt_embeds=None, | |
negative_prompt_embeds=None, | |
): | |
if height % 8 != 0 or width % 8 != 0: | |
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") | |
if (callback_steps is None) or ( | |
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) | |
): | |
raise ValueError( | |
f"`callback_steps` has to be a positive integer but is {callback_steps} of type" | |
f" {type(callback_steps)}." | |
) | |
if prompt is not None and prompt_embeds is not None: | |
raise ValueError( | |
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | |
" only forward one of the two." | |
) | |
elif prompt is None and prompt_embeds is None: | |
raise ValueError( | |
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." | |
) | |
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): | |
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
if negative_prompt is not None and negative_prompt_embeds is not None: | |
raise ValueError( | |
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" | |
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | |
) | |
if prompt_embeds is not None and negative_prompt_embeds is not None: | |
if prompt_embeds.shape != negative_prompt_embeds.shape: | |
raise ValueError( | |
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" | |
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" | |
f" {negative_prompt_embeds.shape}." | |
) | |
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): | |
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor) | |
if isinstance(generator, list) and len(generator) != batch_size: | |
raise ValueError( | |
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
) | |
if latents is None: | |
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
else: | |
latents = latents.to(device) | |
# scale the initial noise by the standard deviation required by the scheduler | |
latents = latents * self.scheduler.init_noise_sigma | |
return latents | |
def _get_add_time_ids(self, original_size, crops_coords_top_left, target_size, dtype): | |
add_time_ids = list(original_size + crops_coords_top_left + target_size) | |
add_time_ids = torch.tensor([add_time_ids], dtype=dtype) | |
return add_time_ids | |
def __call__( | |
self, | |
prompt: Union[str, List[str]] = None, | |
height: Optional[int] = None, | |
width: Optional[int] = None, | |
# h = 512, | |
# w = 512, | |
num_inference_steps: int = 50, | |
guidance_scale: float = 7.5, | |
negative_prompt: Optional[Union[str, List[str]]] = None, | |
num_images_per_prompt: Optional[int] = 1, | |
eta: float = 0.0, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
latents: Optional[torch.FloatTensor] = None, | |
prompt_embeds: Optional[torch.FloatTensor] = None, | |
negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | |
callback_steps: int = 1, | |
cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
guidance_rescale: float = 0.0, | |
args=None, | |
batch=None, | |
depth_embedder=None, | |
normal_embedder=None, | |
canny_embedder=None, | |
body_embedder=None, | |
face_embedder=None, | |
hand_embedder=None, | |
original_size: Optional[Tuple[int, int]] = None, | |
crops_coords_top_left: Tuple[int, int] = (0, 0), | |
target_size: Optional[Tuple[int, int]] = None, | |
): | |
r""" | |
Function invoked when calling the pipeline for generation. | |
Args: | |
prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. | |
instead. | |
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | |
The height in pixels of the generated image. | |
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | |
The width in pixels of the generated image. | |
num_inference_steps (`int`, *optional*, defaults to 50): | |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
expense of slower inference. | |
guidance_scale (`float`, *optional*, defaults to 7.5): | |
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
`guidance_scale` is defined as `w` of equation 2. of [Imagen | |
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
usually at the expense of lower image quality. | |
negative_prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | |
less than `1`). | |
num_images_per_prompt (`int`, *optional*, defaults to 1): | |
The number of images to generate per prompt. | |
eta (`float`, *optional*, defaults to 0.0): | |
Corresponds to parameter eta (Ξ·) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to | |
[`schedulers.DDIMScheduler`], will be ignored for others. | |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | |
to make generation deterministic. | |
latents (`torch.FloatTensor`, *optional*): | |
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | |
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
tensor will ge generated by sampling using the supplied random `generator`. | |
prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
provided, text embeddings will be generated from `prompt` input argument. | |
negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | |
argument. | |
output_type (`str`, *optional*, defaults to `"pil"`): | |
The output format of the generate image. Choose between | |
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a | |
plain tuple. | |
callback (`Callable`, *optional*): | |
A function that will be called every `callback_steps` steps during inference. The function will be | |
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. | |
callback_steps (`int`, *optional*, defaults to 1): | |
The frequency at which the `callback` function will be called. If not specified, the callback will be | |
called at every step. | |
cross_attention_kwargs (`dict`, *optional*): | |
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under | |
`self.processor` in | |
[diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py). | |
guidance_rescale (`float`, *optional*, defaults to 0.7): | |
Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are | |
Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `Ο` in equation 16. of | |
[Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). | |
Guidance rescale factor should fix overexposure when using zero terminal SNR. | |
Examples: | |
Returns: | |
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: | |
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. | |
When returning a tuple, the first element is a list with the generated images, and the second element is a | |
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" | |
(nsfw) content, according to the `safety_checker`. | |
""" | |
# 0. Default height and width to unet | |
height = height or self.unet.config.sample_size * self.vae_scale_factor | |
width = width or self.unet.config.sample_size * self.vae_scale_factor | |
original_size = original_size or (height, width) | |
target_size = target_size or (height, width) | |
# 1. Check inputs. Raise error if not correct | |
self.check_inputs( | |
prompt, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds | |
) | |
# 2. Define call parameters | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
# H = torch.tensor([h * batch_size]).cuda() | |
# W = torch.tensor([w * batch_size]).cuda() | |
device = self._execution_device | |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
# corresponds to doing no classifier free guidance. | |
do_classifier_free_guidance = guidance_scale > 1.0 | |
# 3. Encode input prompt | |
text_encoder_lora_scale = ( | |
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None | |
) | |
prompt_embeds = self._encode_prompt( | |
prompt, | |
device, | |
num_images_per_prompt, | |
do_classifier_free_guidance, | |
negative_prompt, | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
lora_scale=text_encoder_lora_scale, | |
) | |
# 4. Prepare timesteps | |
self.scheduler.set_timesteps(num_inference_steps, device=device) | |
timesteps = self.scheduler.timesteps | |
# 5. Prepare latent variables | |
# num_channels_latents = self.unet.config.in_channels | |
num_channels_latents = 4 | |
latents = self.prepare_latents( | |
batch_size * num_images_per_prompt, | |
num_channels_latents, | |
height, | |
width, | |
prompt_embeds.dtype, | |
device, | |
generator, | |
latents, | |
) | |
_, c, h, w = latents.shape | |
shape = (batch_size * num_images_per_prompt, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor) | |
if "depth" in args.cond_type: | |
if args.cond_reshape == "vae": | |
if batch is None: | |
depth_latents = torch.zeros((batch_size, c, h, w)).to(self.unet.device) | |
else: | |
depth_latents = self.vae.encode(batch["depth"].to(latents.dtype)).latent_dist.sample() | |
depth_latents = depth_latents * self.vae.config.scaling_factor | |
depth_latents_input = torch.cat([depth_latents] * 2) if do_classifier_free_guidance else depth_latents | |
elif args.cond_reshape == "resize": | |
if batch is None: | |
depth_latents = torch.zeros((batch_size, 3, h, w)).to(self.unet.device) | |
else: | |
depth_latents = F.interpolate(batch['depth'], (h,w)) | |
depth_latents_input = torch.cat([depth_latents] * 2) if do_classifier_free_guidance else depth_latents | |
elif args.cond_reshape == "learn_conv": | |
if batch is None: | |
depth_latents = torch.zeros((batch_size, args.embedder_channel, h, w)).to(self.unet.device) | |
else: | |
depth_latents = depth_embedder(batch['depth']) | |
depth_latents_input = torch.cat([depth_latents] * 2) if do_classifier_free_guidance else depth_latents | |
else: | |
assert False, "unknown condition reshape type" | |
if "depth" in args.noisy_cond: | |
# depth_latents = randn_tensor(shape, generator=generator, device=device, dtype=prompt_embeds.dtype) | |
# depth_latents = depth_latents * self.scheduler.init_noise_sigma | |
depth_latents = latents.clone() | |
if "normal" in args.cond_type: | |
if args.cond_reshape == "vae": | |
if batch is None: | |
normal_latents = torch.zeros((batch_size, c, h, w)).to(self.unet.device) | |
else: | |
normal_latents = self.vae.encode(batch["normal"].to(latents.dtype)).latent_dist.sample() | |
normal_latents = normal_latents * self.vae.config.scaling_factor | |
normal_latents_input = torch.cat([normal_latents] * 2) if do_classifier_free_guidance else normal_latents | |
elif args.cond_reshape == "resize": | |
if batch is None: | |
normal_latents = torch.zeros((batch_size, 3, h, w)).to(self.unet.device) | |
else: | |
normal_latents = F.interpolate(batch['normal'], (h,w)) | |
normal_latents_input = torch.cat([normal_latents] * 2) if do_classifier_free_guidance else normal_latents | |
elif args.cond_reshape == "learn_conv": | |
if batch is None: | |
normal_latents = torch.zeros((batch_size, args.embedder_channel, h, w)).to(self.unet.device) | |
else: | |
normal_latents = normal_embedder(batch['normal']) | |
normal_latents_input = torch.cat([normal_latents] * 2) if do_classifier_free_guidance else normal_latents | |
else: | |
assert False, "unknown condition reshape type" | |
if "normal" in args.noisy_cond: | |
# normal_latents = randn_tensor(shape, generator=generator, device=device, dtype=prompt_embeds.dtype) | |
# normal_latents = normal_latents * self.scheduler.init_noise_sigma | |
normal_latents = latents.clone() | |
if "canny" in args.cond_type: | |
if args.cond_reshape == "vae": | |
if batch is None: | |
canny_latents = torch.zeros((batch_size, c, h, w)).to(self.unet.device) | |
else: | |
canny_latents = self.vae.encode(batch["canny"].to(latents.dtype)).latent_dist.sample() | |
canny_latents = canny_latents * self.vae.config.scaling_factor | |
canny_latents_input = torch.cat([canny_latents] * 2) if do_classifier_free_guidance else canny_latents | |
elif args.cond_reshape == "resize": | |
if batch is None: | |
canny_latents = torch.zeros((batch_size, 3, h, w)).to(self.unet.device) | |
else: | |
canny_latents = F.interpolate(batch['canny'], (h,w)) | |
canny_latents_input = torch.cat([canny_latents] * 2) if do_classifier_free_guidance else canny_latents | |
elif args.cond_reshape == "learn_conv": | |
if batch is None: | |
canny_latents = torch.zeros((batch_size, args.embedder_channel, h, w)).to(self.unet.device) | |
else: | |
canny_latents = canny_embedder(batch['canny']) | |
canny_latents_input = torch.cat([canny_latents] * 2) if do_classifier_free_guidance else canny_latents | |
else: | |
assert False, "unknown condition reshape type" | |
if "canny" in args.noisy_cond: | |
# canny_latents = randn_tensor(shape, generator=generator, device=device, dtype=prompt_embeds.dtype) | |
# canny_latents = canny_latents * self.scheduler.init_noise_sigma | |
canny_latents = latents.clone() | |
if "body" in args.cond_type: | |
if args.cond_reshape == "vae": | |
if batch is None: | |
body_latents = torch.zeros((batch_size, c, h, w)).to(self.unet.device) | |
else: | |
body_latents = self.vae.encode(batch["body"].to(latents.dtype)).latent_dist.sample() | |
body_latents = body_latents * self.vae.config.scaling_factor | |
body_latents_input = torch.cat([body_latents] * 2) if do_classifier_free_guidance else body_latents | |
elif args.cond_reshape == "resize": | |
if batch is None: | |
body_latents = torch.zeros((batch_size, 3, h, w)).to(self.unet.device) | |
else: | |
body_latents = F.interpolate(batch['body'], (h,w)) | |
body_latents_input = torch.cat([body_latents] * 2) if do_classifier_free_guidance else body_latents | |
elif args.cond_reshape == "learn_conv": | |
if batch is None: | |
body_latents = torch.zeros((batch_size, args.embedder_channel, h, w)).to(self.unet.device) | |
else: | |
body_latents = body_embedder(batch['body']) | |
body_latents_input = torch.cat([body_latents] * 2) if do_classifier_free_guidance else body_latents | |
else: | |
assert False, "unknown condition reshape type" | |
if "body" in args.noisy_cond: | |
# body_latents = randn_tensor(shape, generator=generator, device=device, dtype=prompt_embeds.dtype) | |
# body_latents = body_latents * self.scheduler.init_noise_sigma | |
body_latents = latents.clone() | |
if "face" in args.cond_type: | |
if args.cond_reshape == "vae": | |
if batch is None: | |
face_latents = torch.zeros((batch_size, c, h, w)).to(self.unet.device) | |
else: | |
face_latents = self.vae.encode(batch["face"].to(latents.dtype)).latent_dist.sample() | |
face_latents = face_latents * self.vae.config.scaling_factor | |
face_latents_input = torch.cat([face_latents] * 2) if do_classifier_free_guidance else face_latents | |
elif args.cond_reshape == "resize": | |
if batch is None: | |
face_latents = torch.zeros((batch_size, 3, h, w)).to(self.unet.device) | |
else: | |
face_latents = F.interpolate(batch['face'], (h,w)) | |
face_latents_input = torch.cat([face_latents] * 2) if do_classifier_free_guidance else face_latents | |
elif args.cond_reshape == "learn_conv": | |
if batch is None: | |
face_latents = torch.zeros((batch_size, args.embedder_channel, h, w)).to(self.unet.device) | |
else: | |
face_latents = face_embedder(batch['face']) | |
face_latents_input = torch.cat([face_latents] * 2) if do_classifier_free_guidance else face_latents | |
else: | |
assert False, "unknown condition reshape type" | |
if "face" in args.noisy_cond: | |
# face_latents = randn_tensor(shape, generator=generator, device=device, dtype=prompt_embeds.dtype) | |
# face_latents = face_latents * self.scheduler.init_noise_sigma | |
face_latents = latents.clone() | |
if "hand" in args.cond_type: | |
if args.cond_reshape == "vae": | |
if batch is None: | |
hand_latents = torch.zeros((batch_size, c, h, w)).to(self.unet.device) | |
else: | |
hand_latents = self.vae.encode(batch["hand"].to(latents.dtype)).latent_dist.sample() | |
hand_latents = hand_latents * self.vae.config.scaling_factor | |
hand_latents_input = torch.cat([hand_latents] * 2) if do_classifier_free_guidance else hand_latents | |
elif args.cond_reshape == "resize": | |
if batch is None: | |
hand_latents = torch.zeros((batch_size, 3, h, w)).to(self.unet.device) | |
else: | |
hand_latents = F.interpolate(batch['hand'], (h,w)) | |
hand_latents_input = torch.cat([hand_latents] * 2) if do_classifier_free_guidance else hand_latents | |
elif args.cond_reshape == "learn_conv": | |
if batch is None: | |
hand_latents = torch.zeros((batch_size, args.embedder_channel, h, w)).to(self.unet.device) | |
else: | |
hand_latents = hand_embedder(batch['hand']) | |
hand_latents_input = torch.cat([hand_latents] * 2) if do_classifier_free_guidance else hand_latents | |
else: | |
assert False, "unknown condition reshape type" | |
if "hand" in args.noisy_cond: | |
# hand_latents = randn_tensor(shape, generator=generator, device=device, dtype=prompt_embeds.dtype) | |
# hand_latents = hand_latents * self.scheduler.init_noise_sigma | |
hand_latents = latents.clone() | |
if "ldmk" in args.cond_type: | |
if args.cond_reshape == "vae": | |
if batch is None: | |
ldmk_latents = torch.zeros((batch_size, c, h, w)).to(self.unet.device) | |
else: | |
ldmk_latents = self.vae.encode(batch["ldmk"].to(latents.dtype)).latent_dist.sample() | |
ldmk_latents = ldmk_latents * self.vae.config.scaling_factor | |
ldmk_latents_input = torch.cat([ldmk_latents] * 2) if do_classifier_free_guidance else ldmk_latents | |
elif args.cond_reshape == "resize": | |
if batch is None: | |
ldmk_latents = torch.zeros((batch_size, 3, h, w)).to(self.unet.device) | |
else: | |
ldmk_latents = F.interpolate(batch['ldmk'], (h,w)) | |
ldmk_latents_input = torch.cat([ldmk_latents] * 2) if do_classifier_free_guidance else ldmk_latents | |
elif args.cond_reshape == "learn_conv": | |
if batch is None: | |
ldmk_latents = torch.zeros((batch_size, args.embedder_channel, h, w)).to(self.unet.device) | |
else: | |
ldmk_latents = hand_embedder(batch['ldmk']) | |
ldmk_latents_input = torch.cat([ldmk_latents] * 2) if do_classifier_free_guidance else ldmk_latents | |
else: | |
assert False, "unknown condition reshape type" | |
if "ldmk" in args.noisy_cond: | |
# hand_latents = randn_tensor(shape, generator=generator, device=device, dtype=prompt_embeds.dtype) | |
# hand_latents = hand_latents * self.scheduler.init_noise_sigma | |
ldmk_latents = latents.clone() | |
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline | |
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
add_time_ids = self._get_add_time_ids( | |
original_size, crops_coords_top_left, target_size, dtype=prompt_embeds.dtype | |
) | |
if do_classifier_free_guidance: | |
add_time_ids = torch.cat([add_time_ids, add_time_ids], dim=0) | |
add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1) | |
# 7. Denoising loop | |
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | |
with self.progress_bar(total=num_inference_steps) as progress_bar: | |
for i, t in enumerate(timesteps): | |
# expand the latents if we are doing classifier free guidance | |
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
if "depth" in args.noisy_cond: | |
depth_latents_input = torch.cat([depth_latents] * 2) if do_classifier_free_guidance else depth_latents | |
depth_latents_input = self.scheduler.scale_model_input(depth_latents_input, t) | |
if "normal" in args.noisy_cond: | |
normal_latents_input = torch.cat([normal_latents] * 2) if do_classifier_free_guidance else normal_latents | |
normal_latents_input = self.scheduler.scale_model_input(normal_latents_input, t) | |
if "canny" in args.noisy_cond: | |
canny_latents_input = torch.cat([canny_latents] * 2) if do_classifier_free_guidance else canny_latents | |
canny_latents_input = self.scheduler.scale_model_input(canny_latents_input, t) | |
if "body" in args.noisy_cond: | |
body_latents_input = torch.cat([body_latents] * 2) if do_classifier_free_guidance else body_latents | |
body_latents_input = self.scheduler.scale_model_input(body_latents_input, t) | |
if "face" in args.noisy_cond: | |
face_latents_input = torch.cat([face_latents] * 2) if do_classifier_free_guidance else face_latents | |
face_latents_input = self.scheduler.scale_model_input(face_latents_input, t) | |
if "hand" in args.noisy_cond: | |
hand_latents_input = torch.cat([hand_latents] * 2) if do_classifier_free_guidance else hand_latents | |
hand_latents_input = self.scheduler.scale_model_input(hand_latents_input, t) | |
if "ldmk" in args.noisy_cond: | |
ldmk_latents_input = torch.cat([ldmk_latents] * 2) if do_classifier_free_guidance else ldmk_latents | |
ldmk_latents_input = self.scheduler.scale_model_input(ldmk_latents_input, t) | |
_, c, h, w = latent_model_input.shape | |
if args.cond_inject == "concat": | |
latent_model_input = torch.cat([latent_model_input, depth_latents_input], dim=1) if "depth" in args.cond_type else latent_model_input | |
latent_model_input = torch.cat([latent_model_input, normal_latents_input], dim=1) if "normal" in args.cond_type else latent_model_input | |
latent_model_input = torch.cat([latent_model_input, canny_latents_input], dim=1) if "canny" in args.cond_type else latent_model_input | |
latent_model_input = torch.cat([latent_model_input, body_latents_input], dim=1) if "body" in args.cond_type else latent_model_input | |
latent_model_input = torch.cat([latent_model_input, face_latents_input], dim=1) if "face" in args.cond_type else latent_model_input | |
latent_model_input = torch.cat([latent_model_input, hand_latents_input], dim=1) if "hand" in args.cond_type else latent_model_input | |
latent_model_input = torch.cat([latent_model_input, ldmk_latents_input], dim=1) if "ldmk" in args.cond_type else latent_model_input | |
elif args.cond_inject == "sum": | |
if len(args.cond_type) == 0: | |
pass | |
else: | |
if args.cond_reshape == "vae": | |
channel_dim = 4 | |
elif args.cond_reshape == "resize": | |
channel_dim = 3 | |
elif args.cond_reshape == "learn_conv": | |
channel_dim = args.embedder_channel | |
sum_latents = torch.zeros((latent_model_input.shape[0], channel_dim, h, w)).to(self.unet.device) | |
sum_latents = sum_latents + depth_latents_input if "depth" in args.cond_type else sum_latents | |
sum_latents = sum_latents + normal_latents_input if "normal" in args.cond_type else sum_latents | |
sum_latents = sum_latents + canny_latents_input if "canny" in args.cond_type else sum_latents | |
sum_latents = sum_latents + body_latents_input if "body" in args.cond_type else sum_latents | |
sum_latents = sum_latents + face_latents_input if "face" in args.cond_type else sum_latents | |
sum_latents = sum_latents + hand_latents_input if "hand" in args.cond_type else sum_latents | |
latent_model_input = torch.cat([latent_model_input, sum_latents], dim=1) | |
added_cond_kwargs = {"time_ids": add_time_ids} | |
# predict the noise residual | |
if args.cond_inject == "spade": | |
if batch is None: | |
num_cond = 0 | |
if "depth" in args.cond_type: num_cond += 1 | |
if "normal" in args.cond_type: num_cond += 1 | |
if "canny" in args.cond_type: num_cond += 1 | |
if "body" in args.cond_type: num_cond += 1 | |
if "face" in args.cond_type: num_cond += 1 | |
if "hand" in args.cond_type: num_cond += 1 | |
if "ldmk" in args.cond_type: num_cond += 1 | |
label_channels = num_cond * 3 | |
structural_cond = torch.zeros((batch_size, label_channels, h, w)).to(self.unet.device) | |
else: | |
structural_cond = [] | |
if "depth" in args.cond_type: | |
structural_cond.append(batch["depth"]) | |
if "normal" in args.cond_type: | |
structural_cond.append(batch["normal"]) | |
if "canny" in args.cond_type: | |
structural_cond.append(batch["canny"]) | |
if "body" in args.cond_type: | |
structural_cond.append(batch["body"]) | |
if "face" in args.cond_type: | |
structural_cond.append(batch["face"]) | |
if "hand" in args.cond_type: | |
structural_cond.append(batch["hand"]) | |
if "ldmk" in args.cond_type: | |
structural_cond.append(batch["ldmk"]) | |
structural_cond = torch.cat(structural_cond, dim=1) | |
structural_cond = torch.cat([structural_cond] * 2) if do_classifier_free_guidance else structural_cond | |
noise_pred = self.unet( | |
latent_model_input, | |
structural_cond, | |
t, | |
encoder_hidden_states=prompt_embeds, | |
cross_attention_kwargs=cross_attention_kwargs, | |
return_dict=False, | |
)[0] | |
else: | |
if t <= self.scheduler.config.num_train_timesteps // 4: | |
noise_pred = self.unet( | |
latent_model_input, | |
t, | |
added_cond_kwargs=added_cond_kwargs, | |
encoder_hidden_states=prompt_embeds, | |
cross_attention_kwargs=cross_attention_kwargs, | |
return_dict=False, | |
)[0] | |
elif t >= self.scheduler.config.num_train_timesteps // 4 and t <= self.scheduler.config.num_train_timesteps // 4 * 2: | |
noise_pred = self.unet2( | |
latent_model_input, | |
t, | |
added_cond_kwargs=added_cond_kwargs, | |
encoder_hidden_states=prompt_embeds, | |
cross_attention_kwargs=cross_attention_kwargs, | |
return_dict=False, | |
)[0] | |
else: | |
noise_pred = self.unet3( | |
latent_model_input, | |
t, | |
added_cond_kwargs=added_cond_kwargs, | |
encoder_hidden_states=prompt_embeds, | |
cross_attention_kwargs=cross_attention_kwargs, | |
return_dict=False, | |
)[0] | |
# perform guidance | |
if do_classifier_free_guidance: | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
if do_classifier_free_guidance and guidance_rescale > 0.0: | |
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf | |
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale) | |
if noise_pred.shape[1] > 4: | |
cond_pred = noise_pred[:, 4:] | |
noise_pred = noise_pred[:, :4] | |
if "depth" in args.cond_type: | |
depth_pred = cond_pred[:, :4] | |
if cond_pred.shape[1] > 4: | |
cond_pred = cond_pred[:, 4:] | |
if "normal" in args.cond_type: | |
normal_pred = cond_pred[:, :4] | |
if cond_pred.shape[1] > 4: | |
cond_pred = cond_pred[:, 4:] | |
if "canny" in args.cond_type: | |
canny_pred = cond_pred[:, :4] | |
if cond_pred.shape[1] > 4: | |
cond_pred = cond_pred[:, 4:] | |
if "body" in args.cond_type: | |
body_pred = cond_pred[:, :4] | |
if cond_pred.shape[1] > 4: | |
cond_pred = cond_pred[:, 4:] | |
if "face" in args.cond_type: | |
face_pred = cond_pred[:, :4] | |
if cond_pred.shape[1] > 4: | |
cond_pred = cond_pred[:, 4:] | |
if "hand" in args.cond_type: | |
hand_pred = cond_pred[:, :4] | |
if cond_pred.shape[1] > 4: | |
cond_pred = cond_pred[:, 4:] | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] | |
if "depth" in args.noisy_cond: | |
depth_latents = self.scheduler.step(depth_pred, t, depth_latents, **extra_step_kwargs, return_dict=False)[0] | |
if "normal" in args.noisy_cond: | |
normal_latents = self.scheduler.step(normal_pred, t, normal_latents, **extra_step_kwargs, return_dict=False)[0] | |
if "canny" in args.noisy_cond: | |
canny_latents = self.scheduler.step(canny_pred, t, canny_latents, **extra_step_kwargs, return_dict=False)[0] | |
if "body" in args.noisy_cond: | |
body_latents = self.scheduler.step(body_pred, t, body_latents, **extra_step_kwargs, return_dict=False)[0] | |
if "face" in args.noisy_cond: | |
face_latents = self.scheduler.step(face_pred, t, face_latents, **extra_step_kwargs, return_dict=False)[0] | |
if "hand" in args.noisy_cond: | |
hand_latents = self.scheduler.step(hand_pred, t, hand_latents, **extra_step_kwargs, return_dict=False)[0] | |
# call the callback, if provided | |
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
progress_bar.update() | |
if callback is not None and i % callback_steps == 0: | |
callback(i, t, latents) | |
if not output_type == "latent": | |
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] | |
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype) | |
if "depth" in args.noisy_cond: | |
depth_image = self.vae.decode(depth_latents / self.vae.config.scaling_factor, return_dict=False)[0] | |
if "normal" in args.noisy_cond: | |
normal_image = self.vae.decode(normal_latents / self.vae.config.scaling_factor, return_dict=False)[0] | |
if "canny" in args.noisy_cond: | |
canny_image = self.vae.decode(canny_latents / self.vae.config.scaling_factor, return_dict=False)[0] | |
if "body" in args.noisy_cond: | |
body_image = self.vae.decode(body_latents / self.vae.config.scaling_factor, return_dict=False)[0] | |
if "face" in args.noisy_cond: | |
face_image = self.vae.decode(face_latents / self.vae.config.scaling_factor, return_dict=False)[0] | |
if "hand" in args.noisy_cond: | |
hand_image = self.vae.decode(hand_latents / self.vae.config.scaling_factor, return_dict=False)[0] | |
else: | |
image = latents | |
if "depth" in args.noisy_cond: | |
depth_image = depth_latents | |
if "normal" in args.noisy_cond: | |
normal_image = normal_latents | |
if "canny" in args.noisy_cond: | |
canny_image = canny_latents | |
if "body" in args.noisy_cond: | |
body_image = body_latents | |
if "face" in args.noisy_cond: | |
face_image = face_latents | |
if "hand" in args.noisy_cond: | |
hand_image = hand_latents | |
has_nsfw_concept = None | |
if has_nsfw_concept is None: | |
do_denormalize = [True] * image.shape[0] | |
else: | |
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] | |
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) | |
if "depth" in args.noisy_cond: | |
depth_image = self.image_processor.postprocess(depth_image, output_type=output_type, do_denormalize=do_denormalize) | |
if "normal" in args.noisy_cond: | |
normal_image = self.image_processor.postprocess(normal_image, output_type=output_type, do_denormalize=do_denormalize) | |
if "canny" in args.noisy_cond: | |
canny_image = self.image_processor.postprocess(canny_image, output_type=output_type, do_denormalize=do_denormalize) | |
if "body" in args.noisy_cond: | |
body_image = self.image_processor.postprocess(body_image, output_type=output_type, do_denormalize=do_denormalize) | |
if "face" in args.noisy_cond: | |
face_image = self.image_processor.postprocess(face_image, output_type=output_type, do_denormalize=do_denormalize) | |
if "hand" in args.noisy_cond: | |
hand_image = self.image_processor.postprocess(hand_image, output_type=output_type, do_denormalize=do_denormalize) | |
# Offload last model to CPU | |
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: | |
self.final_offload_hook.offload() | |
if not return_dict: | |
output_tuple = (image) | |
if "depth" in args.noisy_cond: | |
output_tuple = output_tuple + (depth_image) | |
if "normal" in args.noisy_cond: | |
output_tuple = output_tuple + (normal_image) | |
if "canny" in args.noisy_cond: | |
output_tuple = output_tuple + (canny_image) | |
if "body" in args.noisy_cond: | |
output_tuple = output_tuple + (body_image) | |
if "face" in args.noisy_cond: | |
output_tuple = output_tuple + (face_image) | |
if "hand" in args.noisy_cond: | |
output_tuple = output_tuple + (hand_image) | |
return output_tuple + (has_nsfw_concept) | |
output = StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) | |
if "depth" in args.noisy_cond: | |
output["depth_image"] = depth_image | |
if "normal" in args.noisy_cond: | |
output["normal_image"] = normal_image | |
if "canny" in args.noisy_cond: | |
output["canny_image"] = canny_image | |
if "body" in args.noisy_cond: | |
output["body_image"] = body_image | |
if "face" in args.noisy_cond: | |
output["face_image"] = face_image | |
if "hand" in args.noisy_cond: | |
output["hand_image"] = hand_image | |
return output | |